欧洲人通过食物接触材料暴露于欧洲人,并且广泛用于软化PVC的化学物质是邻苯二甲酸盐,可能导致不孕症和损害发展,以及其对公民和环境影响的替代品尚未完全知道。EU范围的HBM4EU项目研究了来自12个国家的儿童和青少年的邻苯二甲酸盐,发现某些邻苯二甲酸盐(BBZP,DIBP,DEHP,DIDP)和DINCH(替代)在更易感的儿童组中发现了更高的水平。4%的儿童超过了邻苯二甲酸二丁酯(DNBP)的人类生物监测指导价值,而至少4%的儿童和1%的青少年超过了邻苯二甲酸酯(DIBP)的指导价值。邻苯二甲酸酯累计地行动,因此目前有17%的欧洲儿童和青少年因5种反毒性邻苯二甲酸酯的混合物的综合暴露而面临风险(DEHP,DIBP,DNBP,DNBP,BBZP,DINP)。
技术公告 配制酸酐固化环氧体系 简介 Dixie Chemical Company 生产一系列非常适合固化环氧树脂的脂环族酸酐。 这些酸酐包括: • 四氢邻苯二甲酸酐 (THPA) • 六氢邻苯二甲酸酐 (HHPA) • 甲基四氢邻苯二甲酸酐 (MTHPA) • 甲基六氢邻苯二甲酸酐 (MHHPA) • Nadic® 甲基酸酐 (NMA) • 这些材料的配制混合物 关于每种材料的详细信息,请参见 Dixie Chemical Company 提供的特定产品技术公告。 这些酸酐通常用于固化许多高挑战性应用中的环氧树脂,包括用于高性能航空航天和军事应用的纤维增强复合材料,以及纤维缠绕轴承等机械要求高的应用。 它们还具有出色的电气性能,可用于高压应用以及封装电子元件和电路。固化环氧树脂的性质取决于起始环氧树脂、固化剂、促进剂、固化剂与树脂的比例、固化时间和固化温度以及后固化时间和温度。没有一种配方或一组工艺条件能够产生具有所有特性最佳值的固化树脂。因此,在选择配方之前,必须确定预期最终用途所需的特性。一般而言,树脂交联度越高,热变形温度 (HDT)、硬度和耐化学性就越高,但固化产品的抗冲击性和弯曲强度就越低。以下部分将讨论影响性能的因素。
trichalcogenides(例如SNP 2 S 6 [20],SNP 2 SE 6 [21],CUCRP 2 S 6 [22],Cuinp 2 S 6 [23]),金属氧化物二甲替代
摘要:电子封装领域迫切需要具有树脂基体的高性能复合材料,因为它们具有低介电常数、出色的耐高温性、优异的耐腐蚀性、重量轻和易于成型等特点。在本文中,为了改变邻苯二甲腈的介电性能,制备了空心玻璃微球 (HGM) 填充的氟化邻苯二甲腈 (PBDP) 复合材料,其填料含量范围为 0 至 35.0 vol.%。扫描电子显微镜 (SEM) 观察表明改性 HGM 颗粒均匀分散在基质中。PBDP/27.5HGM-NH 2 复合材料在 12 GHz 时表现出 1.85 的低介电常数。含有硅烷化 HGM 填料的复合材料的 5% 热重温度 (T5) (481-486 ◦ C) 高于最低封装材料要求 (450 ◦ C)。此外,PBDP/HGM-NH 2 复合材料的耐热指数 (T HRI) 高达 268 ◦ C。PBDP/HGM-NH 2 复合材料的储能模量在 400 ◦ C 时显著增加至 1283 MPa,与 PBDP 邻苯二甲腈树脂 (857 MPa) 相比增加了 50%。本复合材料的优异介电性能和热性能可为电子封装和能源系统热管理的全面应用铺平道路。
摘要:在本研究中,我们描述了一种将芳烃掺入封闭管(我们将其命名为胶囊烯)的合成方法。首先,我们制备了花瓶状的分子篮 4 – 7 。这些分子篮由一个苯碱基和三个双环[2.2.1]庚烷环融合而成,这些环延伸到邻苯二甲酰亚胺 ( 4 )、萘二甲酰亚胺 ( 6 ) 和蒽二酰亚胺侧 ( 7 ),每个侧都带有一个二甲氧基乙烷缩醛基团。在催化三氟乙酸 (TFA) 的存在下,4、6 和 7 顶部的缩醛转变为脂肪族醛,随后在分子内环化为 1,3,5-三氧杂环己烷(1 H NMR 光谱)。这种环闭合几乎是一个定量过程,它提供了不同大小的胶囊烯 1 (0.7×0.9 纳米)、8 (0.7×1.1 纳米;) 和 9 (0.7×1.4 纳米;),这些胶囊烯的特征是 X 射线晶体学、微晶电子衍射、紫外/可见光、荧光、循环伏安法和热重法。胶囊烯具有出色的刚性、独特的拓扑结构、出色的热稳定性以及可能可调的光电特性,有望用于构建新型有机电子设备。
1内分泌学和代谢司,内科,哈利姆大学神圣心脏医院,anyang,2内分泌学和代谢司,内科,诺伊·欧尔吉医学中心,埃尔吉大学医学院,纽约大学医学司,尤尔吉大学医学院,尤尔吉医学中心,尤尔吉大学医学院3和代谢,Daegu Daegu Fatima医院内部医学系,Daegu 5,内科和代谢部门5级,Hallym University Dongtan Sacred Hospital,Hwaseong,Hwaseong 6,内分泌学和代谢部,HALLYM University Hapernosic nounidest of Intersial of Intersial Medicine of Nifentary of Nifentary of Nifentary of Nifentary of Nifentary of Nifentain of Nifentary of Nifential forsip.首尔,韩国首尔大学医学院内科学系内部分泌学和新陈代谢8分司,
摘要:聚合物的许多理想特征源于其重复单元的聚合方法和结构特征,这些方法通常是由于可加工性成本而导致聚合物的性能。虽然线性替代方案很受欢迎,但通常证明由骨干上的循环重复单元组成的聚合物通常显示出较高的光学透明度,较低的吸收和较高的玻璃过渡温度。这些特定的包括用取代的蓝环或芳族环或两者兼而有之的聚合物。在本评论文章中,我们强调了两个有用的环形聚合物基团,每个胞核丁基(PFCB)芳基聚合物和基于 - 二烯烯丙烯 - (ODA)基于基于的二烯丙烯 - (ODA)基于良好的热稳定性,既表现出杰出的热稳定性,化学抗性稳定性,化学耐药性,机械完整性和提高的加工能力。讨论了不同的合成途径(重点放在环形聚合中)和这些聚合物的性能,然后在广泛的方面进行了相关应用。
结果79 80 Chalkophore缺乏结核分枝杆菌上调81对铜剥夺的响应中的呼吸链成分82 83以了解结核分枝杆菌中二甲依替替替替特里利的功能,我们检查了84
Bangunbangun(Plectranthus amboinicus l.spreng)叶乙醇提取物对白大鼠皮肤癌的组织病理学描述(Rattus novergicus)的影响,表明7,12二甲基苯甲酸二甲二甲基苯甲酸酯(a)芳族抗(DMBA)。
可控的高区域选择性直接 CH 芳基化是人们非常希望实现的,但这仍然是一个巨大的挑战。在此,我们开发了一种简便的区域选择性直接 CH 芳基化方法,用于高效构建各种基于对称二噻吩并邻苯二甲酰亚胺的 π 共轭分子。所得方法适用于各种基质,从富电子单元到具有大空间端基的缺电子单元。已证实芳基卤化物能够通过直接 CH 芳基化与二噻吩并邻苯二甲酰亚胺 (DTI) 偶联,表现出高区域选择性。已证明,通过改变 DTI 核心上的功能端基可以微调发射颜色以覆盖大部分可见光谱。结果提出了一种简便的高选择性直接 CH 芳基化策略,为高效构建 π 共轭分子以供各种潜在的光电应用开辟了前景。