简单摘要:针对成纤维细胞激活蛋白α(FAP)的放射性药物可用于许多不同的癌症类型,因为FAP在几乎所有上皮癌症的肿瘤微环境中都高度表达。单体放射性示例在分子成像(诊断)中表现出巨大的潜力,但肿瘤保留时间相对较短(几个小时)。对于有效的放射性治疗(RLT),放射性示踪剂的生物半衰期应理想地与重要的治疗放射性核素177 LU和225 AC(6.7和9.9天)相匹配。使用FAPI同二聚体Dotaga改善了肿瘤的保留率。(sa.fapi)2。在优化方面,新的FAPI同型二聚体do3a.glu。(fapi)2和dotaga.glu。(FAPI)2。合成。dot- aga.glu。(FAPI)2与Dotaga相比,体外亲和力和选择性表现出优质的放射性标记特性(包括成功的225个AC标记,较高的亲水性和选择性)。(sa.fapi)2。与[177 lu] lu -dot -aga相比,临界器官(肝脏,结肠)的摄取显着降低。(sa.fapi)2。(FAPI)2在第一次患者研究(甲状腺钝性癌)中,同时保持肿瘤摄入较高和长时间。
在预防康普蛋糕的人中,治疗负担得分的降低也有报道。12 concizumab的安全性和耐受性在预期范围内,没有在治疗后报告的血栓栓塞事件。研究期间报告的最常见的不良事件包括:COVID-19(13%),纤维蛋白D-二聚体增加(8%),上呼吸道感染(7%),鼻咽炎(6%)和凝血酶原片段1.2增加(6%)。11
摘要:由于其独特的光物理和电子特性,Pyrene及其类似物在近几十年来一直是广泛研究的主题。Pyrene及其衍生物形成准分子的倾向已在各个领域发现了广泛的应用。氮取代的pyrene衍生物显示出相似的光物理特性,但对它们而言,迄今为止尚未报道准分子发射。在这里,我们使用时间依赖性密度功能理论(TD-DFT)计算来研究pyrene和2-氮平的二聚体的低洼激子状态。确定准分子平衡结构,并使用糖尿病化程序披露了电荷转移(CT)激发和分子间相互作用的贡献。研究表明,两个分子形成的二聚体具有非常相似的激子状态模式,其中相关的CT贡献控制着准分子态的形成,以及L a / l b态倒置。与pyrene相比,2-余吡林中的偶极 - 偶极相互作用稳定了深色黯淡的准分子结构,并增加了转换为明亮的扭曲准分子的屏障。建议在氮取代的衍生物中的这些差异可能会影响准分子发射特性。
Sesterpenoids的生物活性性吸引了许多相关科学社区的广泛兴趣。14 - 19我们关于Hedyosmum Orientale Merr的初步研究。et chun导致了三个瓜伊亚诺莱德的隔离,一个瓜伊亚型替代型二聚二聚体和一个eudesmane - 瓜伊安娜异二聚体倍半萜类化合物。20 - 22作为我们持续的效果的一部分,用于从H. Ori-entale中进一步识别,从药用植物中发现了来自药用植物的结构独特和生物学上有效的天然产物,即23 - 25三个三个三个三囊A-c(1-3)。化合物1 - 3通过掺入decahydro-4,7-钙济硫酸苯二硫酸盐的主要成分和连续的2-氧化液[4.5]脱烷,具有前所未有的螺旋碳骨架。生物合成,化合物1-3可以源自单甲苯二烯4,并共存的瓜伊安娜sesqui-terpenoid,hedyosumin a(5),通过分子间二二二二二苯甲酸酯A(5)。模仿生物合成建议并获取足够数量的样品进行进一步的生物学研究,26,27
组装体的组装不仅由光活性分子本身的分子结构决定,还由分子空间排列方式决定。13 – 15具有明确堆积和分子间相互作用的有机超分子晶体是研究超分子组织及其控制和操作的理想体系。16 – 18因此,如何提供具有理想光响应行为的有机超分子晶体引起了化学和材料科学的广泛关注。分子间[2 + 2]光环加成反应,特别是固态的光二聚化,极易受到分子空间排列的影响。预计只有当反应性p-二聚体中的两个单体尽可能平行排列,并且它们的接近度在4.2 ˚A以内时才会发生。19 – 21此类拓扑化学反应具有迷人的能量转移,能够快速有效地将光转化为化学能和动能。 18,22一方面,晶格原子的空间运动会在周围的p-二聚体中产生局部应力,使晶体发生变形。23,24例如,Naumov和Vittal报道了基于[2+2]光环加成反应的智能分子晶体,实现了弯曲、跳跃、滚动、光突显等多种光机械动态行为。25-27另一方面,
蛋白质 - 蛋白质相互作用(PPI)是理解生物学过程并在治疗进步中起关键作用的基础。作为PPI增益吸引力的深度学习对接方法,基准测试协议和针对有效培训的数据集,用于有效培训和评估其在现实世界情景中的一般性功能和绩效。旨在克服现有方法的局限性,我们引入了Pinder,这是一个全面的注释数据集,该数据集使用结构聚类来得出非冗余接口的数据拆分和In-Incon-Includes holo(bound),apo(Unbound),apo(Unbound)和组合预测的结构。Pinder由2,319,564个二聚体PPI系统(最高2500万个增强PPI)和1,955个高质量测试PPI组成,并删除了接口数据泄漏。在方面,Pinder提供了一个带有180个二聚体的测试子集,可与Alphafold-Multimer进行比较,而没有任何接口泄漏其训练集。毫不奇怪,Pinder-Bench-Mark表明,在漏水测试集评估时,现有对接模型的性能被高估了。最重要的是,通过在Pinder界面聚集的分裂上重新培训,我们表明训练分裂的基于接口群集的采样,以及多样化且较少的漏水验证拆分,可实现强大的概括改进。
摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。
人类遗传疾病通常是由复合杂合性突变引起的,其中突变基因的每个等位基因都具有不同的遗传病变。但是,由于缺乏适当的模型,对此类突变的研究受到阻碍。在这里,我们描述了在强制性酶二聚体中的复合异伴变体的动力学模型,该变体在一个单体中包含一个突变,而第二个单体中的另一个突变中包含一个突变。该酶由人YarS2编码用于Mito-trosyl-tRNA合成酶(MT-Tyrrs),该酶是氨基化酪氨酸到MT-TRNA Tyr的氨基酰基。yarS2是MT-氨基酰基-TRNA合成酶的基因的成员,其中致病性突变的疾病严重程度与酶活性之间的相关性有限。我们在YARS2中识别一对与新生儿死亡有关的化合物杂合变体。我们表明,虽然每个突变在MT-TYRR的同型二聚体中导致氨基酰化的最小缺陷,但反式跨性别的两个突变会协同降低酶活性,从而更大。因此,这种动力学模型准确地概括了疾病的严重程度,强调了其研究YARS2突变的效用及其对具有复合杂合突变的其他疾病的泛化潜力。
编码Cu-Zn超氧化物歧化酶1(SOD1)的基因中的突变引起家族性肌萎缩性侧索硬化症(FALS)病例的子集。这些突变的共同作用是SOD1通常是稳定的二聚体,将种子有毒骨料的有毒单体分离。大量的研究工作已致力于开发稳定SOD1变体二聚体的化合物,但不幸的是,这尚未导致治疗。我们假设循环硫代硫酸盐交叉接头有选择地靶向一个罕见的2个半胱氨酸的基序,可以稳定在体内引起伪造的SOD1变体。我们创建了一个化学多样化的循环硫代硫化和确定结构 - 链接 - 活性关系的库。根据其交联速率和类似药物样的特性选择了预先铅化合物“ S -XL6”。共结晶结构清楚地建立了s -xl6在CYS 111上桥接单体并稳定SOD1二聚体的结合。生物物理研究表明,对于任何动力学稳定剂的任何蛋白质靶标而言,S -XL6(高达24°C)提供的稳定程度是前所未有的。基因沉默和蛋白质降解治疗方法需要仔细的剂量滴定,以平衡减少的fals sod1表达的益处与毒性丧失酶功能。我们表明S -XL6不承担此责任,因为它挽救了fals Sod1变体的活性。尚未证明没有药理剂与体内的SOD1结合。s -XL6通过避免靶向与血浆蛋白的结合表现出一定程度的选择性。在这里,使用fals鼠标模型,我们演示了口服生物利用度; S -XL6迅速参与SOD1,从而增加了SOD1在体内半衰期; S -XL6越过血脑屏障。综上所述,我们的结果表明,环状硫代氨基氨基介导的SOD1稳定应作为fals的潜在治疗方法,应受到进一步的关注。
外源性因素:外部因素,如紫外线 (UV) 辐射、电离辐射和化学致癌物,会显著造成 DNA 损伤。紫外线辐射可导致环丁烷嘧啶二聚体 (CPD) 和 6-4 光产物的形成,从而扭曲 DNA 螺旋。电离辐射可产生双链断裂 (DSB),这是最致命的 DNA 损伤形式之一。化学剂,包括烷化剂和多环芳烃 (PAH),也可以修饰 DNA 碱基,导致诱变。