过去几十年来,生长技术的令人瞩目的进步使得人们能够制造出非常高质量的低维半导体结构——量子阱、量子线和量子点,这为光电子学和自旋电子学领域的量子信息技术开辟了新的研究途径和无数的应用 1-3 。作为量子限制的直接结果,基本半导体激发可以达到非常大的结合能,使所谓的“激子”领域成为一个有前途的研究领域 4 。虽然激子的概念在空间限制沿一维(量子阱)或二维(量子线)时有意义,但我们在这里表明,当三个空间维度受到限制(量子点)时,束缚电子-空穴对作为激子的图像会被打破。这就是为什么我们不应该像对待其他结构那样将量子点 (QD) 中的电子-空穴对称为激子,而应该使用其他术语。这个问题不仅仅是语义问题;对于电子-空穴对与其他载流子相互作用并与光子耦合,以及光子吸收的可能性,物理理解完全不同。
评分 本课程与现实工作环境一样,主要基于主观评估。当有明确的客观标准时,分配(或扣除)“分数”是非常合适的,但当我们的表现大部分是主观的时候,我发现应用一般准则和相对于这些准则对学生表现进行主观评估很有用。这对某些人来说是一种解脱,而对其他人来说则是一种压力(尤其是那些想要定期跟踪课程积分累积的人)。然而,在工作环境中,我们很少获得每日“积分”,以便我们在一年中跟踪我们的分数。相反,我们在应对组织生活的复杂性时,有不规则和不连贯的反馈机会。个人评估的评分基于我对您的工作与战略课堂中研究生的典型工作水平的比较。我将对每次评估使用的一般评分标准如下:
多模 Gottesman-Kitaev-Preskill (GKP) 码的最新进展在增强离散和模拟量子信息的保护方面显示出巨大的潜力。这种扩大的保护范围为量子计算带来了机会,通过保护压缩——许多量子计量协议中的基本资源——可以使量子传感受益。然而,量子传感使量子纠错受益的潜力尚未得到充分探索。在这项工作中,我们提供了一个独特的例子,其中量子传感技术可以应用于改进多模 GKP 码。受分布式量子传感的启发,我们提出了分布式双模压缩 (dtms) GKP 码,它以最少的主动编码操作提供了纠错优势。事实上,所提出的代码依赖于单个(主动)双模压缩元件和分束器阵列,可有效地将连续变量相关性分配给许多 GKP 辅助元件,类似于连续变量分布式量子传感。尽管构造简单,但使用 dtms-GKP 量子比特码可实现的代码距离与以前通过强力数值搜索获得的结果相当 [PRX Quantum 4, 040334 (2023)]。此外,这些代码能够实现模拟噪声抑制,超越最著名的双模式代码 [Phys. Rev. Lett. 125, 080503 (2020)],而无需额外的压缩器。我们还为所提出的代码提供了一个简单的两级解码器,对于两种模式的情况,该解码器似乎接近最优,并允许进行分析评估。
背景海藻是最可持续的生物量之一,因为它的生长速度以及缺乏土地,肥料和生长淡水需求。可以处理它们以提供清洁能源,服务和可销售的产品,包括生物塑料 - 支持经济增长,粮食安全和可持续性野心。海藻还可以支持更广泛的英国政府野心1,例如自然环境的恢复以及用于治疗癌症2和糖尿病等医疗状况的产品的开发。因此,有强烈的环境和经济原因可以支持新兴的海藻行业,尤其是通过创建专门的海藻加工厂(生物精致),其中多种产品是以可持续的方式生产的,可最大程度地提高价值并最大程度地减少浪费。顺便说一句,到2027年4月4日,全球海藻生物生物产品市场规模和价值预计将超过60亿英镑,英国处于领导这一领域的强烈地位。这是由于英国具有出色的生物制造能力和专业知识,宽敞的海岸线和海底空间区域,并且还成为公认的北大西洋海藻多样性中心。644种不同的物种居住在其沿海水域5。但是,与其他欧洲和亚洲国家相比,英国海藻行业仍处于起步阶段,英国有机会失去将自己定位为该行业的国际领导者的机会。
德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。 ); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。 );德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P. ) );德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P. ) );德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。 );德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称) );临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称 );肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)德国海德堡德国癌症研究中心的分子遗传学师(C.F.A.,M.I.,B.R.,P.L.,M.Z。); HOPP儿童癌症中心海德堡,德国海德堡(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症研究中心儿科胶质瘤研究小组(D.T.W.J.,M.K.,S.M.P。);德国海德堡的德国癌症联盟和德国癌症研究中心儿科神经科学系(S.M.P.);德国海德堡海德堡大学医院儿科肿瘤学,血液学和免疫学(S.M.P.);德国癌症联盟,德国癌症研究中心,德国海德堡(D.T.W.J.,M.K.,S.M.P.,P.L。);德国海德堡大学海德堡大学医院病理研究所神经病理学系(又称);临床合作部门神经病理学,德国转化癌症研究财团,德国癌症研究中心,海德堡,德国(又称);肿瘤中的群体基因组不稳定性,德国癌症研究中心,德国海德堡(A.E.)
本文档是公认的手稿版本的已发表作品,该作品以环境科学技术和技术的最终形式出现,版权所有©2023 American Chemical Society在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.est.2c09816。
摘要。额环开环的分解聚合(FromP)是一种快速,低能的制造反应,可用于治疗热固性材料。div> dicyclopentadiene(DCPD)导致聚(双环戊二烯)(p(dcpd)),这是一种具有出色机械性能和化学稳定性的坚硬热固性。像大多数热眠者一样,P(DCPD)无法重新处理,因此很难回收。以前的工作表明,将少量可切合单元掺入P(DCPD)网络的链段中,可以使其解构。在这里,我们报告说,在FromP中,在市售的多功能共聚物(DHF)2,3-二氢呋喃(DHF)既可以充当有效的Grubbs催化剂抑制剂,并引入了可裂解的酸性单元。所得材料保留高性能特性,包括115-165°C的玻璃过渡温度和35-40 MPa的弹性模量。在临界载荷水平上方添加DHF可以实现可解构的热固性。我们进一步展示了通过额叶聚合的自由形式的3D打印。
图2:硅酸二核的转移学习结果。(a)转移(蓝色)和直接学习(橙色)的能量误差,是用于训练的DFT数据量的函数。底部面板显示了由于传输学习而导致的误差的减少。(b)与DFT值相比,使用转移和直接学习和reaxff(灰色)评估的700个结构的测试集的能量。(c) - (d)与上图相同,在力误差的情况下。(e)使用DFT(黑色),MLP-Direct(Orange)和MLP转移(蓝色)计算的γ-亮石的声子分散。(f)相同多晶型物的弹性张量。颜色表示相对于DFT值的偏差。
融合细丝制造(FFF)或融合沉积建模(FDM)是多种领域中广泛使用的增材制造技术。然而,空隙,层之间的粘结差,而FDM Pa-Rameter通常会影响FDM打印的物体,从而改变其强度。研究人员已经研究了用于FDM打印的碳纳米管(CNT)复合材料,以提高其特征。本文提出了一个用于预测机械性能的CIENT三级计算模型,以及用于制备CNT融合的昀碗哀叹的独特淬火过程。通过广泛的参数分析揭示了FDM过程参数在机械性能上的ince。与纯ABS相比,注入CNT的复合材料表现出更好的键合和模量。实验研究表明,对于ABS和ABS-CNT而言,层高度的增加分别使弹性模量分别恶化了21.03%和27.92%。在pure ABS中,In ll密度分别从100%增加到75%和50%,将模量增加49.3%和69.6%。分别在0 - 0 0和0 - 90 0方向上打印的零件,分别为纯ABS和纳米复合材料发现了2.11%和1.7%的降低。计算结果与实验性昀碗nding非常吻合,在0.1 mm和0.2 mm的层高度的差异从10.15%到5.5%不等。对于其他参数(例如栅格方向),0 - 0 0和0 - 90 0的差分别为5.3%和6.9%。计算结果与实验结果一致,使其成为优化FDM打印和利用CNT以提高零件性能的有用工具。
IEA NZE - 1.5°C概述了全球能源部门到2050年获得Net-Zero CO 2排放所必需的技术,政策和行为改变。温度的升高达到2050年左右的最高水平刚好超过1.5度。随后由于非CO 2排放(例如甲烷)的持续降低,温度开始缓慢下降,到2100年,温度升高已降至1.4摄氏度。交付IEA NZE在很大程度上取决于所有以有效而互惠互利的方式共同努力的政府。