图 3:PAN IPP 的平面内分辨率评估。(a) 定制 USAF-1951 光掩模的投影聚焦在液-液界面。(b) 使用 0.6 wt.% V-50 从 IPP 获得的目标 PAN 薄膜图像。黄色箭头表示 (c,d) 中表示的强度分布的线和方向。(cd) 第 3 组在 0.5、1.0 和 1.5 wt.% (c) V-50 和 (d) VA-044 的强度分布。分辨率极限对应于第一组,其中线条不再能从强度分布中分辨出来,黑线表示在光掩模的图像平面中获得的强度分布。(e) 分辨率极限定义为已识别组中的单个线宽和 (f) 印刷 PAN 薄膜的每个图像中的气泡数与光引发剂浓度和类型。标记和误差线表示在相同条件下获得的五种 PAN 薄膜的平均值和标准偏差。所有照片的曝光时间为 30 秒。
量子到古典过渡的现象学,这是将原本量子系统驱动到对其物理配置的完全经典描述的过程,是广泛研究的对象。确实,这种过渡是否是由于新的基本物理学引起的是一个有争议的问题[1]。特别是,如果可以将复杂性和大小生长的量子系统的破坏性归因于固有机制,或者仅仅是周围环境的不可避免的存在[2,3],则仍处于争议。是由于环境的变质不能为测量问题提供令人满意的解决方案,从而引起了量子到经典的过渡问题的令人满意的解决方案,崩溃模型体现了一个替代的理论框架[4,5]。通过将波函数的崩溃提升到嵌入随机动力学中的通用物理机制中,崩溃模型以一种现象的方式解释了量子到经典的过渡,从而体现了量子力学的大型修饰的实例。通过随机schödinger方程和引入新的基本参数来实现这种修改。当用于评估微型系统动力学时,崩溃模型的框架会恢复标准的量子力学。向大型系统移动,相干性迅速抑制,以防止宏观区分状态的大空间叠加。连续的自发定位(CSL)是最深入的综合模型之一[6,7]。它通过进入量子系统的主方程的额外耗散术语来描述位置上的连贯性丧失。这意味着受到倒塌机制的开放量子系统应经历不可归因于其他环境噪声源的额外耗散。测试此模型是探索有效性量子机械限制的当前感兴趣的[8]。但是,当前在
摘要:大多数基于脑电图的生物特征识别研究报告的结果都是基于信号数据库的,记录的脑电图会话数量有限,使用相同的单个脑电图记录来训练和测试所提出的模型。然而,脑电图信号极易受到干扰、电极放置和临时条件的影响,这可能导致对所考虑方法的评估被高估。我们的研究考察了用作训练会话的不同记录会话数量将如何影响基于脑电图的验证。我们分析了 29 名参与者的原始数据,每人有 20 个不同的记录会话,以及 23 名额外的冒名顶替者,每人只有一个会话。我们将功率谱密度估计的原始系数和转换为分贝刻度的功率谱密度估计系数作为浅层神经网络的输入。我们的研究表明,多个记录会话引入的方差会影响灵敏度。我们还表明,在我们的条件下,将会话数量增加到 8 个以上并不能改善结果。对于 15 次训练,实现的准确率为 96.7 ± 4.2%,对于 8 次训练和 12 次测试,实现的准确率为 94.9 ± 4.6%。对于 15 次训练,在所有攻击尝试中,成功冒名顶替攻击的概率为 3.1 ± 2.2%,但这个数字与使用 6 次记录会话进行训练没有显著差异。我们的研究结果表明,需要将来自多个记录会话的数据纳入基于 EEG 的识别训练中,并且增加测试会话的数量不会显著影响获得的结果。虽然呈现的结果针对的是静息状态,但它们可以作为其他范例的基线。
记录版本:该预印本的一个版本于 2022 年 11 月 5 日在《自然通讯》上发表。已发布的版本请参阅 https://doi.org/10.1038/s41467-022-34542-9 。
具有多个频率的抽象微型超声传感器阵列是内窥镜光声成像(PAI)系统中的关键组件,可实现高空间分辨率和生物医学应用的大型成像深度。在本文中,我们报告了基于陶瓷薄膜PZT的开发,基于PZT的双重和多频压电微机械超声传感器(PMUT)阵列以及其PAI应用的演示。的长度为3.5毫米或直径10 mm,正方形和环形PMUT阵列,含有多达2520 pm的元素,并且用于内窥镜PAI应用,开发了从1 MHz到8 MHz的多个频率。通过晶片键和化学机械抛光(CMP)技术获得厚度为9μm的薄陶瓷PZT,并用作PMUT阵列的压电层,其压电常数D 31的测量高达140 pm/v。从这个高的压电常数中获得的好处,制造的PMUT阵列表现出高机电耦合系数和较大的振动位移。除了电气,机械和声学表征外,还使用嵌入到琼脂幻像中的铅笔导线进行了PAI实验。通过具有不同频率的PMUT元素成功检测到光声信号,并用于重建单一和融合的光声图像,这清楚地证明了使用双频和多频PMUT阵列的优势,以提供具有高空间分辨率的全面光声图像,并同时使用高空间分辨率和较大的信号和较大的信号比率。
本文介绍了一种光伏 (PV) 储能系统的综合设计和控制策略。该系统由一个 2kW 光伏系统、两个转换器电路、一个 6 欧姆的电阻负载和一个集成直流总线的锂离子电池存储组成,为电阻负载提供恒定功率。该方案提供了两种转换器拓扑,一种是升压转换器,另一种是 DC/DC 双向转换器。升压转换器直接串联连接到 PV 阵列,而双向 DC/DC 转换器 (BDC) 连接到电池。升压转换器用于调节 PV 阵列的最大功率点跟踪 (MPPT)。双向控制器的闭环控制采用 Takagi-Sugeno 模糊 (TS-Fuzzy) 控制器来实现,以调节电池充电和放电功率流。所提出的方案提供了良好的直流总线电压稳定性。给出了所提出的控制方案在 MATLAB/Simulink 下的仿真结果,并与比例积分 (PI) 控制器进行了比较。在实时数字模拟器(RTDS)上验证了MATLAB获得的仿真结果。
一直遵循摩尔定律,根据该定律,通过光刻生产的集成电路的集成度会翻倍。到目前为止,这些微芯片主要采用波长为 193 nm 的光学光刻技术制造。为了实现 10 纳米以下的结构尺寸,必须使用极紫外光 (EUV):这可以实现更好的光学分辨率。然而,EUV 光刻面临着许多挑战。EUV 光被强烈吸收,因此必须在真空中进行曝光,并且在照明和成像系统中,必须将带透镜的折射光学器件替换为带镜子的反射光学器件。对要开发的光学器件的要求很高:它们需要高水平的研究和开发,以显著改善表面质量、材料成分、尺寸和形状。
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1. 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 5.1. 一般考虑. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
乳腺癌 (BC) 是全球女性最常见的癌症之一;然而,BC,尤其是三阴性乳腺癌 (TNBC) 的成功治疗仍然是一项重大的临床挑战。最近,光热疗法 (PTT) 已被证明是一种可以克服化疗或手术缺点的新疗法,该疗法涉及在辐射下产生热量以实现 BC 的光热消融,具有微创性和出色的时空选择性。值得注意的是,当将 PTT 与化疗和/或光动力疗法相结合时,可以在原发性和转移性 BC 肿瘤中实现增强的协同治疗效果。因此,本综述讨论了基于纳米技术的光热疗法在治疗 BC 及其转移方面的最新发展,以提供未来 BC 治疗的潜在策略。