在光电探测器技术中,瓶颈被确定为能够检测低强度电磁辐射的新型材料的挑战,并且与综合电路(IC)制造也兼容。在各种金属氧化物半导体中,基于过渡金属氧化物(TMOS)材料更适合于由于其宽带,热稳定性和化学稳定性而导致的紫外线(UV)光电探测器应用。尤其是,三氧化钨(WO 3)已被证明是光子应用中最合适的候选者,包括电动型,光色素和气体传感器设备。在此,以增强性能增强的基于WO 3的光电探测器测试设备的开发已集中。WO 3薄膜以不同的氧局压(P O 2)的形式沉积在SIO 2 /Si底物上,并使用射频(RF)Magnetron溅射技术沉积在溅射压力条件下。在论文的第一部分中,溅射技术(如P o 2)中最重要的生长参数和用于沉积WO 3薄膜的溅射压力是根据光电探测器测试设备的性能进行了优化的。使用各种表征技术(包括X射线衍射(XRD),田间发射扫描电子显微镜(FESEM),X射线光电学光谱(XPS),Ra-Many和Atomic Force Microscopy(AFM),对结构,形态和化学状态进行了分析。Ti/Wo 3/Ti测试磁发炉在382 nm的紫外线照明下显示出0.166 a/w的较高响应性,在非常低的功率密度为0.66 mW/cm 2的情况下。生长的WO 3薄膜用于使用钛电极(TI)电极的Fabiale Metal-Metal-Senemenductor-Metal(MSM)平面结构化光电探测器测试设备,并测量了光电探测器参数,例如光电构成,响应率,响应性,检测性,检测率和外部量子效率(EQE)。为了实现从紫外线到可见区域的多光谱吸收,在论文的第二部分中介绍了新的基于WO 3的异质结构。最初,溅射基于石墨烯的溅射(GR/WO 3)异质结构被制造以研究紫外可见的光电探测器性能。GR/WO 3异质结构在512 nm的可见照明下达到了0.085 A/W的最大响应性。然而,由于石墨烯的某些局限性,WS 2 /WO 3异质结构是通过化学蒸气沉积(CVD)技术将WS 2纳米结构在WO 3层上种植到WO 3层的方法。在这里,使用互插的银(AG)电极制造Ag /WS 2 /WO 3 /Ag光电探测器测试设备。由于WS 2的纳米结构和外部电子迁移率的形成,在紫外线和可见的照明下分别实现了2.94 A/W和2.01 A/W的高响应性。获得的结果测试是WS 2 /WO 3异质结构是宽带紫外可见光电探测器的有前途的候选者,并且可以使用其他TMO和TMD进行相同的策略,以实现光电式Decessices的高性能光电探测器。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
摘要。我们提出了一个具有图形用户界面(GUI)的光子模拟量子计算的用户友好型软件,该软件允许方便地操作而无需程序化技能。可以通过导入波导位置文件或在GUI的交互式板上手动绘制配置来灵活地设置汉密尔顿人。我们的软件为二维量子步行,量子随机步行,多颗粒量子步行和玻色子采样提供了一种强大的理论研究方法,这可能都可以在光子芯片上的物理实验系统中实现,并且它将激发光子量子量子计算和量子计算的丰富多样性。我们已经改进了算法以确保永久计算的效率,并提供了有关教育用途的案例研究,这使用户更容易访问光子量子模拟的研究。©2022光学仪器工程师协会(SPIE)[doi:10.1117/1.oe.61.8.081804]
摘要 量子随机数生成器 (QRNG) 基于对单个量子系统执行的自然随机测量结果。在这里,我们展示了使用具有可调分光比的 Sagnac 干涉仪实现的分支路径光子 QRNG。分光比的微调使我们能够最大化生成的随机数序列的熵,并有效地补偿组件中的公差。通过从衰减的电信激光脉冲产生单光子,并使用市售组件,我们能够直接从原始测量数据生成超过 2 GB 的随机数序列,平均熵为 7.99 位/字节。此外,我们的序列通过了 NIST 和 Dieharder 统计测试套件的随机性测试,从而证明了其随机性。我们的方案展示了一种基于动态调整生成的随机序列均匀性的 QRNG 替代设计,这对于依赖于独立实时测试其性能的现代生成器的构建至关重要。
1土耳其伊斯蒂尼大学医学院医学院医学系医学系; oyku.geyik@istinye.edu.tr 2分子癌研究实验室(Isumcrc),伊斯蒂尼大学,伊斯坦布尔34010,土耳其; eulukaya@istinye.edu.tr 3核心研究与预防研究所(ISPRO)核心研究实验室,意大利佛罗伦萨50139; giulia.anichini@gmail.com 4医学系医学系医学院,伊斯提尼大学,伊斯坦布尔34010,土耳其5号,55139佛罗伦萨大学佛罗伦萨大学实验与临床医学系,意大利佛罗伦萨 *通信 *通信 *通信:Fabio.marra@uniifirf.it(f.uniifif。 ); chiara.raggi@unifin );电话。 : +39-05-5275-8128(F.M. ); +39-05-5275-8128(C.R.) †这些作者为这项工作做出了同样的贡献。 ‡这些作者对这项工作也同样贡献。1土耳其伊斯蒂尼大学医学院医学院医学系医学系; oyku.geyik@istinye.edu.tr 2分子癌研究实验室(Isumcrc),伊斯蒂尼大学,伊斯坦布尔34010,土耳其; eulukaya@istinye.edu.tr 3核心研究与预防研究所(ISPRO)核心研究实验室,意大利佛罗伦萨50139; giulia.anichini@gmail.com 4医学系医学系医学院,伊斯提尼大学,伊斯坦布尔34010,土耳其5号,55139佛罗伦萨大学佛罗伦萨大学实验与临床医学系,意大利佛罗伦萨 *通信 *通信 *通信:Fabio.marra@uniifirf.it(f.uniifif。); chiara.raggi@unifin);电话。: +39-05-5275-8128(F.M.); +39-05-5275-8128(C.R.)†这些作者为这项工作做出了同样的贡献。‡这些作者对这项工作也同样贡献。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
将等离子体纳米结构与治疗药物以可控的方式结合到可生物降解的聚合物纳米粒子 (NPs) 中,对于纳米医学的不同应用很有意义。通过结合等离子体钯纳米片 (NSs) 的原位形成和封装药物的适当离子性质,可以设计出先进的混合纳米材料。这项研究提出了一种通过 Pickering 双乳液合成混合纳米结构的新方法。当 Pd 前体通过气相程序原位还原时,具有独特近红外 (NIR) 光学特性的各向异性钯 (Pd) NSs 可以组装在 < 200 nm NPs 的聚乳酸-共-乙醇酸基质内。混合纳米材料对外部 NIR 光刺激作出反应。当与疏水性药物结合封装时,在单一阶段中以前所未有的精度组装具有总负载选择性的等离子体纳米结构,为新型治疗诊断学提供了新的机遇,特别是在需要触发药物输送和光热疗法时。
通过使用基因组编辑和稳定植物转化技术,开发将高粱基因与表型联系起来的基因组水平知识库以实现生物能源目标,对于理解基本生理功能和作物改良至关重要。我们与参与该项目的各个实验室一起贡献中央枢纽能力,以创建、测试和培育转基因和基因组编辑植物。我们已经建立了可靠的协议,用于通过农杆菌介导将实验性遗传构建体引入高粱 cv BTx430,并合作生成该项目正在进行的研究所需的可行转基因。这些实验包括:; (1) 用于敲低的高粱 RNAi 构建体,例如电压门控氯离子通道蛋白、α碳酸酐酶 7 (CA) 和 9-顺式环氧胡萝卜素双加氧酶 4 以及 myb 结构域蛋白 60; (2) 构建体用于测试磷酸烯醇丙酮酸羧化酶 (PEPC) 启动子表达、CA 过表达和具有改变动力学的 PEPC 的保真度;(3) 旨在测试一系列增加的叶肉 CA 活性的 CA 过表达的其他版本;(4) Ta Cas 9、dTa Cas9 和 dCas9 转录激活因子用于改进编辑,以及;(5) 构建体用于评估转基因过程的改进,旨在增加转化频率并缩短 T1 种子的时间。这些品系目前处于转基因过程的不同阶段。使用形态发生调节剂介导的转化 (MRMT) 的最新发展是实现快速转化和基因组编辑的突破。我们报告了一种使用 MMRT 技术的改进的快速转化方法的开发,该方法有可能增加我们的项目的吞吐量并缩短时间。与 Voytas 实验室合作,我们评估了 MRMT 载体的公共版本。 Voytas 实验室还在测试递送基因组编辑试剂的新方法,特别是使用 RNA 病毒载体通过感染递送 gRNA。通过感染进行可遗传基因编辑已在多个双子叶植物中实现,我们正在努力在狗尾草和高粱中实施该技术。
Linh 等人 35 发现用离子半径较大的碱金属(M = Li、Na 和 K)取代(Bi 0.5 M 0.5 )TiO 3 会增加其直接带隙。将 MCaF 3(M = K、Cs)中的 K 位取代为 Cs 位,可将带隙从间接变为直接,从而改善光学特性。36 Gillani 等人还报道将碱土金属(Mg、Ca、Ba)掺杂到 SrZrO 3 中可使带隙从间接变为直接。37,38 此外,利用静水压力将带隙从间接变为直接被证明是有益的,就像在许多立方钙钛矿中所看到的那样。 39 – 44 通过施加外部压力,卤化物立方钙钛矿 CsBX 3 (B ¼ Sn, Ge; X ¼ Cl, Br) 的带隙减小到零,从而导致半导体到金属的转变。45 – 49 在静水压力下,还对 Ca 基立方碱金属卤化物钙钛矿 KCaX 3 (X ¼ F, Cl) 50,51 和 ACaF 3 (A ¼ Rb, Cs) 进行了第一性原理研究。52,53