图 1 用于 PCM 后端集成的 SiN 辅助硅光子工艺。(a) 器件制造流程图。(b) 测量具有不同数量级联沟槽的波导的透射光谱。插图是级联器件的布局。(c) 采用切割法评估 SiO 2 沟槽蚀刻工艺引入的波导损耗。(d) 制造后的器件的 3D 示意图。后端集成的 SbSe 可实现推挽式 MZI 开关的微调
摘要:该研究的目的是基于从44个EEG通道的实时sloreta来测试主要腿的视觉 - 否反馈引导运动成像(MI)的可行性。十名健壮的参与者参加了两次会议:第1节持续的MI,反馈和第2节持续的一条腿持续使用Neurofeactback。mi在20 s开到20 s的间隔内进行,以模拟功能磁共振成像。神经反馈以呈现运动皮层的皮质切片的形式是由在实际运动过程中具有最强活性的频带提供的。Sloreta处理延迟为250毫秒。会议1导致在前额叶皮层上主要在8-15 Hz带中产生双侧/对侧活性,而会议2则在主运动皮层上导致IPSI/双侧活动,涵盖了与运动执行过程中相似的区域。在有和没有神经反馈的会话中,不同的频段和空间分布可能反映不同的电机策略,最著名的是,在第1节中,在第2节中的操作条件。单腿MI可以用于中风患者康复的早期阶段。更简单的视觉反馈和运动提示而不是持续的MI可能会进一步增加皮质激活的强度。
图 1. 使用三电极装置探测 n 型薄膜的光电化学特性。(a) p(C 6 NDI-T 的化学结构。(b) 在 PBS 中电化学掺杂过程中 ITO 涂层 p(C 6 NDI-T) 薄膜的吸光度光谱的变化。(c) 黑暗条件下在 PBS 中记录的 ap(C 6 NDI-T) 薄膜的循环伏安法 (CV) 曲线。该薄膜涂在圆形微电极上 (A = 0.196 mm 2 )。扫描速率为 50 mV/s。箭头表示扫描方向,并标记还原峰。(d) 在 OCP 条件下测得的 p(C 6 NDI-T) 电极在黑暗(黑色)和暴露于红光(660 nm,406 mW/cm 2 )时的奈奎斯特图。插图突出显示了高频下的阻抗曲线。 (e) 顶部:浸没在电解质中的薄膜与光相互作用的示意图(红色箭头)。光形成激子(移动的电子-空穴对),一些激子分解为自由电荷载体。底部:在 t= 0 分钟时开启红光照射(660 nm,406 mW/cm 2 )约 2 分钟后,聚合物电极的 OCP 变化。
摘要:纳秒电磁脉冲对人类健康,尤其是在人类细胞中形成自由基的影响,是持续研究和正在进行的讨论的主题。这项工作介绍了对人间充质干细胞中单个高能电磁脉冲对形态,生存能力和自由基产生的影响的初步研究(HMSC)。将细胞暴露于单个电磁脉冲中,电场幅度为〜1 mV/m,脉冲持续时间约为〜120 ns,由600 kV的马克思发生器产生。分别使用共聚焦荧光显微镜和扫描电子显微镜(SEM)检查暴露后2小时和24小时的细胞活力和形态。用电子顺磁共振(EPR)研究了自由基的数量。显微镜观测和EPR测量表明,与对照样品相比,对高能电磁脉冲的暴露均未影响产生的自由基的数量,也没有在体外的HMSC形态。
摘要:在运动想象脑机接口研究中,一些研究者设计了单侧上肢静态下的力的想象范式,这些范式很难应用于脑控康复机器人系统中需要诱发患者求助需求的思维状态,即机器人与患者之间的动态力交互过程。针对单次MI-EEG信号在不同力级之间的特征差异较小,设计MSTCN模块提取时频域不同维度的细粒度特征,再利用空间卷积模块学习空间域特征的面积差异,最后利用注意力机制对时频空域特征进行动态加权,提高算法的灵敏度。结果表明,对于实验采集的三级力MI-EEG数据,该算法的准确率为86.4±14.0%。与基线算法(OVR-CSP+SVM(77.6±14.5%)、Deep ConvNet(75.3±12.3%)、Shallow ConvNet(77.6±11.8%)、EEGNet(82.3±13.8%)和SCNN-BiLSTM(69.1±16.8%))相比,我们的算法具有更高的分类准确率,差异显著,且拟合性能更好。
摘要:运动电位的执行或想象力反映了可以通过脑电图(EEG)作为运动相关皮质电位(MRCP)记录的皮质电位。单个试验中MRCP的识别是获得对脑计算机界面(BCI)的自然控制的挑战性可能性。我们提出了一种基于最佳非线条过滤器的MRCP检测的新方法,处理包括延迟样品(获得时空过滤器)的不同脑电图的不同通道。可以通过更改时间过滤器的顺序和输入数据的非线性处理来获得不同的输出。通过在训练集上进行交叉验证,选择最佳的分类(适用于用户),并从最佳三个投票以使用测试数据获得输出,从而评估了这些文件的分类性能。将该方法与我们小组最近引入的另一种最先进的过滤器进行了比较,该方法将其应用于16位执行或想象50个自定进度的上limb Palmar Grasps的健康受试者中。新方法在80%的整体数据集上具有中位数的准确性,这比以前的过滤器(即63%)要好得多。对于在线BCI系统设计具有异步,自定为自定进定应用的可行性。
摘要:动作的执行或想象由皮质电位反映,可通过脑电图 (EEG) 记录为运动相关皮质电位 (MRCP)。从单次试验中识别 MRCP 是实现脑机接口 (BCI) 自然控制的一项具有挑战性的可能性。我们提出了一种基于最佳非线性滤波器的 MRCP 检测新方法,处理包括延迟样本在内的不同 EEG 通道(获得时空滤波器)。通过改变时间滤波器的顺序和输入数据的非线性处理,可以获得不同的输出。这些滤波器的分类性能通过对训练集进行交叉验证来评估,选择最佳滤波器(适应用户)并从最佳三个滤波器中进行多数投票,以使用测试数据获得输出。将该方法与我们团队最近推出的另一种最先进的滤波器进行比较,该滤波器应用于 16 名健康受试者记录的 EEG 数据,这些受试者执行或想象 50 次自定步调的上肢手掌抓握。新方法对整个数据集的平均准确率为 80%,明显优于之前的滤波器(即 63%)。对于具有异步、自定步调应用程序的在线 BCI 系统设计,它是可行的。
AI-500-022 设备配备蜂窝调制解调器,可通过 4G 网络进行连接,配备 GPS 进行自动定位,配备加速度计进行倾斜和击倒检测。与基于云的 Glance 平台的集成和连接允许:24/7 管理、电源监控、远程编程、占星时钟调度功能、高级数据收集以及自动生成的详细说明关键绩效指标的报告。当在现场检测到问题时,会通过文本和电子邮件提供警报,确保实时通知电源故障(由于集成的最后一刻电池备份)、灯开/关错误、击倒事件等。如果蜂窝网络连接中断或丢失,设备还会继续在本地记录事件。
摘要:快速检测氢气泄漏或其在不同环境中的释放,尤其是在大型电动汽车电池中,是感应应用的主要挑战。在这项研究中,详细报告并详细讨论了ZnO:EU纳米线阵列的形态,结构,化学,光学和电子特征。尤其是,研究了电化学沉积过程中不同欧盟浓度的影响以及感应特性和机制。令人惊讶的是,通过在沉积过程中仅使用10μMEU离子,与未源性ZnO纳米线相比,气体响应的值增加了近130倍,我们发现单个ZnO:EU纳米线设备的H 2气体响应约为7860。此外,用紫外线(UV)光和一系列测试气体测试了合成的纳米线传感器,显示了约12.8的UV响应性,对100 ppm H 2气体的uv响应性良好。显示出双模式纳米传感器可同时检测紫外线2气体,以选择性检测紫外线照射期间H 2及其对感应机制的影响。这里的纳米线传感方法证明了使用如此小的设备检测到苛刻的小规模环境中的氢泄漏的可行性,例如,在移动应用程序中堆叠了电池组。此外,通过基于密度的功能理论模拟来支持所获得的结果,该模拟强调了稀土纳米颗粒在氧化物表面上的重要性,以提高气体传感器的灵敏度和选择性,即使在室温下,也允许,例如,允许较低的功耗消耗和较低的量。关键字:EU 2 O 3,ZnO,传感器,氢,电化学沉积