摘要:本文介绍了一种预测云量对光伏 (PV) 场在预测期内影响的新方法,该方法利用 PV 板作为传感器,结合物理和持久性模型并集成储能系统控制。所提出的方法需要模拟由 22 kV 可再生能源和储能组成的电网,从而能够评估与国家电网相比的网络行为。为了优化计算效率,作者开发了 PV + 储能模块的等效模型,在考虑天气条件(尤其是云量)的同时准确模拟系统行为。此外,作者介绍了一种控制系统模型,该模型能够有效响应网络动态并使用 PID 控制器对储能系统进行全面控制。精确的电力预测对于保持电力连续性、管理整个电力系统的爬坡率以及确保电网稳定性至关重要。我们的方法能够与太阳能围栏系统集成,这证明了其创新性及其对可再生能源领域做出重大贡献的潜力。作者还评估了各种针对电网的情景,以确定它们对电网稳定性的影响。研究结果表明,储能与所提出的结合物理和持久性模型的预测方法的集成为有效管理电网稳定性提供了一种有希望的解决方案。
近年来,LIDAR(光检测和范围)技术与自动驾驶电动汽车(AEV)的整合引起了极大的关注,这标志着朝着实现更安全,更有效的运输系统的关键步骤。LIDAR传感器具有提供精确和实时三维环境感知的无与伦比的能力,具有增强AEV的自主性和可靠性的巨大承诺。然而,在该领域迅速发展的研究中,确保居住者和行人的安全仍然是一个关键的关注,需要一丝不苟的关注。现有文献广泛地讨论了与AEVS中的LiDAR集成相关的技术方面和性能指标,但在解决有效缓解潜在风险所需的细微差别安全含义和主动措施方面存在显着差距。本文旨在通过提出一个综合框架来弥合这一差距,该框架优先考虑LIDAR技术将其整合到AEV中。
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。
关于STC沙特电信公司(STC)是根据皇家法令编号m/35日期为24 Dhul Hijja 1418H(对应于1998年4月21日),该授权转让邮政,电报和电话部的电报和电话部(MOPTT),其各种组件,其各种组件,技术和行政设施,与STC的各种组成部分,并符合部长决议。213日期为23 Dhul Hijja 1418h(对应于1998年4月20日),该批准了STC章程(章程)。STC在整个沙特阿拉伯王国(王国)的电信服务提供商开始在王国开始运营,该服务在6 Muharram 1419H(对应于1998年5月2日),并获得了其商业注册号1010150269在4个Rabi al-awal 1419H(对应于1998年6月29日)的沙特股份公司。STC的总部位于沙特阿拉伯王国利雅得市Al Mursalat地区Imam Mohammed Bin Saud Street的Abdulaziz综合大楼。STC由沙特阿拉伯王国政府全资拥有。政府根据部长委员会决议171日期为2 Rajab 1423H(对应于2002年9月9日)。 公共投资基金(PIF)是STC的最终控股股东,其所有权在2021年通过二级产品出售了6%的STC股票后64%。。171日期为2 Rajab 1423H(对应于2002年9月9日)。公共投资基金(PIF)是STC的最终控股股东,其所有权在2021年通过二级产品出售了6%的STC股票后64%。因此,自由股的百分比变为36%。因此,STC的资本从SAR的200亿股增加到500亿。在2022年,STC的资本已利用SAR的300亿股份盈利,并在资格日期股东拥有的每股1股1.5股股票中增加了150%。STC资本的增加将支持实现其增长和扩张策略,同时通过增加和多样化STC的投资并夺取沙特阿拉伯王国电信和技术部门的预期增长机会,从而最大程度地提高其股东的回报。
我们使用Spintronic Thz发射器研究了局部THZ场的生成,以增强微米大小的成像的分辨率。远面成像,波长高于100 l m,将分辨率限制为该数量级。通过使用光学激光脉冲作为泵,可以将Thz Field Genert固定在激光束聚焦的区域。由于激光束聚焦而引起的生成的THZ梁的差异要求成像的物体在THZ场波长以下的距离处靠近生成位。我们根据自旋电流在COFEB/PT异质结构中通过FS-LASER脉冲产生THZ辐射,并通过商业低温种植-GAA(LT-GAAS)Auston Switches检测到它们。通过应用具有电动阶段的2D扫描技术来确定THZ辐射的空间分辨率,从而可以在子微米计范围内进行台阶尺寸。在近距离限制内,我们在千分尺尺度上在激光斑点大小的尺寸上实现空间分辨率。为此,在由300 nm SiO 2间隔层隔开的旋转发射器上蒸发了金测试模式。将这些结构相对于飞秒激光斑点(生成THZ辐射)允许测定。刀边方法在1 THz时产生的全宽半宽度梁直径为4:9 6 0:4 l m。在简单的玻璃基材上沉积自旋发射器异质结构的可能性使它们在许多成像应用中具有近距离成像的候选者。
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
我们支持减少温室气体排放并促进可持续发展的碳政策。ge Healthcare致力于到2050年获得净净值,我们已经签署了以科学目标计划(SBTI)为1.5C的业务野心,这是一群有远见的公司领导者,采取了雄心勃勃的气候行动,我们致力于实施基于科学的目标。这包括一个公共目标,即到2030年将运营排放(范围1和2)减少50%,而2019年的基线。由于这些努力,我们希望通过不仅解决我们产品的环境影响,而且还要解决医疗保健专业人员及其患者面临的挑战,以实现更可持续的卫生系统。
摘要 — 由于迭代矩阵乘法或梯度计算,机器学习模块通常需要大量的处理能力和内存。因此,它们通常不适用于处理能力和内存有限的可穿戴设备。在本研究中,我们提出了一种用于功能性近红外光谱 (fNIRS) 系统的超低功耗、基于实时机器学习的运动伪影检测模块。我们实现了 97.42% 的高分类准确率、38 354 个查找表和 6024 个触发器的低现场可编程门阵列 (FPGA) 资源利用率以及 0.021 W 的动态功耗。这些结果优于传统的 CPU 支持向量机 (SVM) 方法和其他最先进的 SVM 实现。这项研究表明,可以利用基于 FPGA 的 fNIRS 运动伪影分类器,同时满足低功耗和资源限制,这在嵌入式硬件系统中至关重要,同时保持高分类准确率。
摘要:科学家已经证明,成年大鼠大脑某个区域的神经元从其出生地迁移到大脑的其他部分。同样的过程也发生在成年人身上。没有有效的可视化工具来查看人脑的功能和结构。在本文中,我们专注于设计一个框架,以更多地了解阿尔茨海默病及其人脑神经元的过程。这个框架被称为基于超图的神经元重建框架。它有助于通过超图的构建和重建来映射神经元的诞生和死亡。该框架还识别神经元生命周期中的结构变化。它的性能通过小世界网络和稳健的连接度量进行了定量评估。索引词:超图、多级神经元、脑部疾病、可视化、通信网络。
© 作者,由 EDP Sciences 出版。这是一篇开放获取的文章,根据知识共享署名许可 4.0 条款发布(https://creativecommons.org/licenses/by/4.0/)。
