肺部肿瘤发生的早期事件是抑制肿瘤基因LIMD1(包含1的LIM结构域)的丧失;这编码了支架蛋白,该蛋白质通过多种不同机制抑制肿瘤发生。在LIMD1中,约有45%的非小细胞肺癌(NSCLC)有效,但在临床前和临床研究中,这种NSCLC的亚型被忽略了。由于缺乏“可吸毒”目标,因此很难在这些LIMD1功能丧失患者中定义的治疗靶标,因此需要替代方法。为此,我们进行了第一个重新利用筛选,以识别NSCLC细胞中赋予合成致死性并损失合成致死性的化合物。PF-477736被证明可以通过抑制多种激酶在体外有选择地靶向LIMD1的细胞,从而通过凋亡诱导细胞死亡。此外,PF-477736在皮下异种移植模型中有效治疗LIMD1 - / - 肿瘤,在LIMD1 + / +细胞中没有显着作用。我们已经确定了一种具有显着的临床前表征的新型药物工具,该工具是探索和定义LIMD1脱氧癌的绝佳候选者,是一个新的批判性未满足需求的新治疗亚组。
递归类型和有限的量化是许多现代编程语言中的突出特征,例如Java,C#,Scala或打字稿。不幸的是,过去显示递归类型,有限的定量和亚型之间的相互作用在过去是有问题的。因此,定义一个结合这些特征并具有理想特性的简单基础演算,例如可确定性,亚型的传递性,保守性以及声音和完整的算法配方是长期的挑战。本文显示了如何在称为𝐹𝐹≤的新微积分中使用ISO回复类型扩展。𝐹≤是一种众所周知的多态演算,具有有界定量的限制。在𝐹𝐹≤中,我们添加了ISO恢复类型,并使用最近提出的名义展开规则来相应地通过ISO恢复亚型扩展了亚型关系。此外,我们还使用所谓的结构折叠/展开规则来打字,这是受Abadi,Cardelli和Viswanathan(1996)提出的结构展开规则的启发。结构规则为文献中更传统的折叠/展开规则增添了表达能力,它们可以实现其他应用程序。我们提出了几个结果,包括:类型的声音;传递性;超过𝐹≤的保守性;以及𝐹≤的声音和完整的算法公式。我们研究了两个变体𝐹≤。第一个使用核的扩展(一种众所周知的可决定变体𝐹≤)。此扩展名接受等效而不是相等的界限,并显示出可以保留可决定的亚型。第二个变体采用全𝐹≤规则进行有限的定量,并且具有不可确定的亚型。此外,我们还研究了𝐹𝐹的内核版本的扩展名,称为𝐹𝜇≤≥≥报,具有相交类型和下限定量的形式。来自𝐹𝐹内核版本的所有属性都保留在𝐹𝜇≤≥。本文中的所有结果均已在COQ Theorem Prover中形式化。
芽囊原虫是一种广泛分布的原生动物,已知可引起人类和动物(包括全球范围内的牛)的消化系统疾病。这种寄生虫表现出大量的遗传变异,在哺乳动物和鸟类中分为 42 个已知亚型 (ST)。其中 16 个亚型在牛中被鉴定,14 个是人畜共患的。本研究探讨了芽囊原虫的分布和遗传变异及其在奶牛中的人畜共患潜力。在孟加拉国的两个产奶区:Sirajganj(n=100)和 Pabna(n=100),从小规模奶牛犊(年龄 <6 个月)采集了 200 个新鲜粪便样本。采用基于针对小亚基核糖体 RNA(SSU rRNA)基因的 PCR 检测的分子研究来筛查和亚型粪便样本中的寄生虫。分析显示,10% 的牛感染了芽囊原虫,来自 Sirajganj 的样本中 8% 的阳性病例和来自 Pabna 的样本中的 12%。考虑了性别、年龄、品种组和粪便稠度等各种因素,但这些因素在统计上并不显著。在 20 个阳性的芽囊原虫分离株中,仅鉴定出三种亚型,即 ST10、ST21 和 ST26,其中 ST10 亚型最为普遍。值得注意的是,在粪便样本中未检测到人畜共患亚型,表明缺乏人畜共患意义。这些研究结果为牛芽囊原虫感染的分子流行病学提供了见解,表明该病在研究区域内的遗传多样性较低。需要进一步研究以确定孟加拉国牛中芽囊原虫的确切频率和基因组成及其人畜共患潜力。关键词:芽囊原虫、流行病学、亚型、小型奶牛、孟加拉国。
图3附属大学/组织/机构A:循环RNA癌症疫苗的前15个组织B:循环RNA癌症疫苗的组织网络C:RNA癌症疫苗的前15个组织D:RNA癌症疫苗的组织网络
二维神经元培养物概括大脑体内环境的能力有限。在这里,我们引入了一个三维体外模型,用于人类神经元转换,超过了二维培养物的空间和时间约束。专注于与帕金森氏病有关的诱导dopaine神经元(IDAS)的直接转换,该模型在2周内产生功能成熟的IDAS,并允许长期生存。作为概念证明,我们使用单核RNA测序和iDan生成期间的毛谱系跟踪,并发现所有神经胶质亚型都会产生神经元,并且该元素依赖于三个神经转化因子的协调表达。我们还展示了随着时间的流逝,成熟和功能性IDAS的形成。该模型促进了转化过程的分子研究,以增强对转化结果的理解,并为旨在推进患病大脑中替代性治疗策略的体外重编程研究提供了系统。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
Simon Heeke 1 , Carl M. Gay 1 , Marcos R. Estecio 2 , Hai Tran 1 , Benjamin B. Morris 1 , Bingnan Zhang 1 , Ximing Tang 3 , Maria Gabriela Raso 3 , Pedro Rocha 4 , Siqi Lai 5,6 , Edurne Arriola 4 , Paul Hofman 7 , Veronique Hofman 7 , Prasad Kopparapu 8 , Christine M. Lovly 8 , Kyle Concannon 1 , Luana Guimaraes De Sousa 1 , Whitney Elisabeth Lewis 1 , Kimie Kondo 2 , Xin Hu 9 , Azusa Tanimoto 1 , Natalie I. Vokes 1 , Monique B. Nilsson 1 , Allison Stewart 1 , Maarten Jansen 10 , Ildikó Horváth 11 , Mina Gaga 12 , Vasileios Panagoulias 13 , Yael Raviv 14 , Danny Frumkin 15 , Adam Wasserstrom 15 , Aharona Shuali 15 , Catherine A Schnabel 16 , 奚元欣 17 , 刁丽霞 17 , 王琪 17 , 张建军 1,9 , Peter Van Loo 5,9,18 , 王静 17 , Ignacio I. Wistuba 3 , Lauren A. Byers 1,8 , John V. Heymach 1,8
机器学习可用于根据精神障碍的共同生物学基础来定义精神疾病的亚型。在这里,我们分析了来自 ENIGMA、非 ENIGMA 队列和公共数据集的 41 个国际队列中 4,222 名精神分裂症患者和 7038 名健康受试者的横断面大脑图像。使用亚型和阶段推断 (SuStaIn) 算法,我们通过绘制精神分裂症中灰质变化的空间和时间“轨迹”来识别两个不同的神经结构亚型。亚型 1 的特征是早期皮质为主的损失和纹状体扩大,而亚型 2 显示海马、纹状体和其他皮质下区域早期皮质下为主的损失。我们确认了这两种神经结构亚型在欧洲、北美和东亚等不同样本地点的可重复性。这种基于成像的分类法有可能识别具有共同神经生物学属性的个体,从而表明基于生物因素重新定义现有疾病结构的可行性。
摘要:小肠细菌过度生长(SIBO)是小肠的病理学,可能会使个体易于营养缺乏症。鲜为人知的SIBO的特定亚类型(例如氢有氢(H+),甲烷为主(M+),还是氢/甲烷 - 显性(H+/M+),SIBO患者的营养状况和饮食摄入量。这项研究的目的是研究生化参数,饮食营养摄入量和独特的SIBO亚型之间的可能相关性。这项观察性研究包括67例新诊断为SIBO的患者。生化参数和饮食。H+/M+组与低血清维生素D(P <0.001),低血清铁蛋白(P = 0.001)和低纤维摄入(P = 0.001)相关。M+组与高血清叶酸(P = 0.002)和低摄入纤维(P = 0.001)和乳糖(P = 0.002)相关。H+组与低乳糖摄入量有关(P = 0.027)。这些结果表明,SIBO的亚型可能会对饮食摄入产生不同的影响,从而导致一系列生化缺陷。相反,特定的饮食模式可能会使SIBO亚型的发展倾向于。对营养状况和饮食的评估以及SIBO亚型的诊断被认为是SIBO治疗的关键组成部分。
Institute(IUCA),50009 Zaragoza,西班牙; Abeltranros@salud.aragon.es 3 Aragon Agrifood Institute(IA2),50013 Zaragoza,西班牙; 50013 50013西班牙扎拉戈萨; M.T.T.);个人电脑。心血管(Cibercv),50009 Zaragoza,Hospitology,医院CL Nico nico Icressitorio Lozano Blesa,50009 Zaragoza,西班牙 *通信:Monteagu@unizar.es