电子邮件:oleksandrmalyi@gmail.com 摘要:传统固体物理学长期以来将材料的光学特性与其电子结构关联起来。然而,最近对本征间隙金属的发现挑战了这一经典观点。间隙金属具有不同于金属和绝缘体的电子特性,具有大量未经任何有意掺杂的自由载流子和内部带隙。这种独特的电子结构使间隙金属可能优于通过有意掺杂宽带隙绝缘体设计的材料。尽管间隙金属具有透明导体等有希望的应用,但由于缺乏对其电子能带结构与光学特性之间相关性的了解,因此为特定目的设计间隙金属仍然具有挑战性。本研究重点关注有间隙金属的代表性实例,并展示了以下情况:(i) 在可见光范围内具有强带内吸收的有间隙金属(例如 CaN 2 ),(ii) 在可见光范围内具有强带间吸收的有间隙金属(例如 SrNbO 3 ),(iii) 有间隙金属(例如 Sr 5 Nb 5 O 17 ),这些金属是潜在的透明导体。我们探索了识别透明导体的潜在间隙金属的复杂性,并提出了发现新一代透明导体的逆材料设计原理。
这项研究的发现突出了使用Agilent Cary 5000 UV-VIS-NIR分光光度计与Agilent Cary Winuv软件相结合的有效性,以对半导体材料进行准确且可靠的带隙分析。祈祷的Mantis扩散反射配件的整合确保了可重复的样品定位和测量。通过软件的内置计算器函数促进波长扫描的第一个衍生物的使用,被证明是确定频带隙的简化且精确的方法。获得的带隙值与已建立的文献一致,证实了这种方法的有效性。此方法为在光催化和太阳能转化等领域工作的研究人员提供了一种强大而有效的工具,从而使各种材料中电子结构的精确表征能够精确表征。
寻找具有直接带隙和高载流子迁移率的二维 (2D) 稳定材料因其在电子设备中的应用而受到广泛关注。利用第一性原理计算和粒子群优化 (PSO) 方法,我们预测了一种具有二维空间全局最小值的新型 2D 稳定材料 (HfN 2 单层)。HfN 2 单层具有直接带隙 (∼ 1.46 eV),根据变形势理论预测其具有高载流子迁移率 (∼ 10 3 cm 2 · V − 1 · s − 1)。在应变条件下,通过施加简单的外部应变可以很好地保持和灵活调节直接带隙。此外,新预测的 HfN 2 单层具有良好的热稳定性、动力学稳定性和机械稳定性,这通过从头算分子动力学模拟、声子色散和弹性常数得到了验证。这些结果表明 HfN 2 单层是未来微电子器件中很有前途的候选材料。
这是根据Creative Commons Attribution许可条款(https://creativecommons.org/licenses/4.0)的开放访问出版物。请注意,重复使用,重新分配和复制尤其要求作者和来源都有信用。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。
抽象的光学拉力为光学操纵提供了新的自由度。通常认为,事件场的梯度不能产生远距离的光拉力。在这里,我们从理论上提出并在数值上证明了由操纵对象中的自我诱导的梯度范围造成的远程光拉力。类似于量子隧道中的潜在障碍,我们使用光子带隙设计,以获取位于光子晶体波导中的操纵物体内部的强度梯度,从而获得拉力。与通常的散射型光学拉力拉力不同,所提出的梯度 - 线方法不需要精确地消除从操纵物体中的反射。特别是,爱因斯坦 - 劳伯形式主义用于设计这种非常规的梯度力。在波导中操纵物体的光共振时,可以通过多达50倍的因素来增强力的大小,从而使其对吸收不敏感。开发的方法有助于打破散射力的局限性,以获得长距离的光学拉力,以操纵和分类纳米颗粒和其他纳米对象。使用带隙来获得拉力的发达原理也可以应用于其他类型的波浪,例如声波或水波,这对于众多应用很重要。
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
并提出极有可能通过实验实现。19 最近,人们利用第一性原理 DFT 计算来计算某些稀土氮化物钙钛矿 ABN 3(A = La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 和 B = Re、W)的磁矩和热力学稳定性,并提出了它们在氮化物材料领域的众多技术应用。16 在这方面,DFT 现在被认为是一种估算所研究材料的电子和光电特性的优雅方法。电子和光电特性主要由材料的带隙决定。虽然采用局部密度近似 (LDA) 和广义梯度近似 (GGA) 的 DFT 计算低估了 E g 值,33 – 36 但未经筛选的混合函数和 Perdew – Burke – Ernzerhof – Hartree – Fock 交换 (PBE0) 函数会高估化合物相对于其实验对应物的带隙能量。37 – 39 在这方面,使用混合交换关联 (XC) 函数,例如 Heyd – Scuseria – Ernzerhof (HSE)、Becke-3 参数-Lee-Yang-Parr (B3LYP) 和 B3PW91,通过单次 GW (G 0 W 0 ) 近似完成的 DFT 计算可以预测接近实验结果的化合物的 E g 值。 14,33,40 – 48 此类计算的主要缺陷在于它们对计算要求高并且需要高端服务器来运行它们。在这种情况下,机器学习(ML)现在被认为是一种有效的替代途径,可以避免与 DFT 计算相关的固有计算成本,并有助于在材料特性和目标变量(此处为 Eg)之间建立一个简单的模型。49 – 60 尽管最近已成功实施 ML 方法预测氧化物、卤化物钙钛矿和双钙钛矿化合物的带隙,61 – 66 但在预测氮化物钙钛矿的带隙方面尚未发现此类报道。考虑到上述问题,本文旨在从 ML 模型中预测 ABN 3 钙钛矿的带隙。已经进行了 DFT 研究以估计两种新型氮化物钙钛矿 CeBN 3(B = Mo,W)的电子能带结构、Eg 值和光电特性。本文的结构如下:第2节讨论了计算方法,包括ML方法和第一性原理DFT计算。第3.1节分享了ABN 3钙钛矿数据的清理和预处理。第3.2节讨论了ML模型的训练和验证。第3.3节致力于理解两种新发现的氮化物钙钛矿化合物CeBN 3 (B = Mo, W)的结构性质和稳定性。第3节。图4以CeBN 3 化合物的电子能带结构和带隙计算为框架,采用不同层次的DFT理论进行计算。相应的光电特性已在第3.5节中重点介绍。本研究的总体结论已在第4节中讨论。
双钙钛矿卤化物是可再生能源生产的有前途的材料,满足解决能源稀缺问题的标准。因此,研究这些卤化物可能对光电和太阳能电池应用有用。在这项研究中,我们使用全电位线性线性的增强平面波(FP-LAPW)方法,使用密度功能理论计算,研究了2 agircl 6(a = cs,rb,k)的结构,机械,热力学,电子和光学特性,以评估其适用于renewability的适用性,并使用全电位线性的增强平面波(FP-lapw)方法来计算。金匠公差因子,八面体因子和新的公差因子已经证实了预测化合物的立方稳定性。我们还通过计算形成焓,结合能和声子分散曲线来验证这些化合物的热力学稳定性。此外,对刚度常数的Born-huang稳定性要求证实了标题化合物的机械稳定性。为了预测准确的光电特性,我们采用了TB-MBJ电位。电子带结构的计算表明,标题为halides的直接带隙半导体性质,值分别为1.43 eV,1.50 eV和1.55 eV,分别为CS 2 AGIRCL 6,RB 2 AGIRCL 6和K 2 AGIRCL 6。此外,所有这些化合物都显示出非常低的有效电子质量,表明它们的高载体迁移率可能。这些化合物的光电导率和吸收光谱验证了我们的条带结构结果的准确性。此外,2 AGIRCL 6(A = CS,RB,K)化合物的光学性质表现出非常低的反射率和出色的光吸收系数(10 5 cm -1)在可见光光谱中,表明它们作为太阳能电池中吸收层的适合性。
摘要:具有微米孔的固体泡沫用于不同领域(过滤、3D 细胞培养等),但目前,控制其孔隙水平的泡沫几何形状、内部结构和单分散性以及机械性能仍然是一个挑战。现有的制造此类泡沫的尝试要么速度慢,要么尺寸受限(大于 80 μm)。在这项工作中,通过使用温度调节的微流体工艺,首次创建了具有高度单分散开放孔(PDI 低于 5%)的 3D 固体泡沫,其尺寸范围为 5 至 400 μm,刚度跨越 2 个数量级。这些特性为细胞培养、过滤、光学等领域的激动人心的应用开辟了道路。这里,重点放在光子学上。从数值上看,这些泡沫打开了三维完整光子带隙,临界指数为 2.80,因此与金红石 TiO 2 的使用兼容。在光子学领域,这种结构代表了第一个具有此功能的物理可实现的自组装 FCC(面心立方)结构。
电负性_A 赤道角 顶角 s轨道能量_B p轨道能量_B 原子序数_B 电负性_B s轨道能量_A 电离能_A 电离能_B p轨道能量_A 原子半径_B 原子半径_A 原子序数_A 氧化态_A 氧化态_B