术语定义: 均质 异质 各向异性 各向异性 (奥德赛路径) (各向异性 尝试所有路径 => 水晶) (非各向异性 坚持一条路径 => 玻璃) 亚稳态平衡 程度,广泛:V,质量 密集:密度,温度 状态函数 T,P,r,G,H,S,… 第一定律,能量守恒 S dU = S dq + S dw = 0 内部能量,热量,工作 绝热,放热,吸热
氧化亚铜(CuOH)是一类重要的金属化合物,包括硫族化物[5,6]、卤化物[7,8]和一些复杂的盐(例如 Chevreul 盐)[9],它们在催化[10,11]、传感[12,13]、能量转换[14,15]和光学[16]等领域有着广泛的应用。其中,氧化亚铜(CuOH)长期以来一直受到人们的广泛关注。[17,18] 早在 20 世纪初,Miller 和 Gillett 就观察到在低温下(低于 60 °C)用铜工作电极电解 NaCl 溶液时,会产生黄色的 CuOH 沉淀。[19,20] 随后,人们进行了多项研究,探究通过各种方法合成的 CuOH 的特征结构和性能。 [21–23] 然而,在早期的研究中,CuOH 大多以块状固体形式存在,结构为亚稳态,由于缺乏适当的保护以防止氧化和/或脱水,当暴露于环境或热处理时,淡黄色沉淀物会迅速变为深红色,表明形成了 Cu 2 O。这种结构不稳定性使研究所得 CuOH 的性质和应用变得困难。2012 年,Korzhavyi 等人 [24] 进行了理论研究,证明 CuOH 可以以固体形式存在;然而亚稳态导致形成各种晶体结构构型的随机混合物,例如 Cu 2 O 和冰 VII H 2 O。Soroka
65 • 10 -4,其中考虑了背景的斜率,这是根据 PII 峰的形状估计的。该值比 Wagenblast 和 Swarts 的值大约大 50 倍。这个高峰值表明亚稳态氮化物或薄 AlN 沉淀物的分辨率远高于 Wagenblast 和 Swarts 显示的 Fe-0.2C 中亚稳态碳化物的分辨率。但是,它并没有表明氮空位情况下的单位缺陷松弛强度比碳空位情况下的单位缺陷松弛强度高 50 倍。
高熵概念在材料和科学研究界是众所周知的发现亚稳态新材料的有效策略。例如,结构有序但多种元素组成无序的高熵合金可以实现前所未有的物理和机械性能。在材料科学领域,熵控制设计概念带来了无数发现,极大地影响了结构材料、热电和催化剂的发展。在过去十年中,高熵的理念对电池的发展产生了相当大的影响,包括电极和电解质[1]。传统的碳酸盐基电解质由于操作范围狭窄,成为先进电池的瓶颈。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
我们用电磁捕获的原子离子晶体来表示量子比特或自旋,每个离子内的两个电子能级表现为有效量子比特或自旋 1/2 粒子。电子能级的具体选择取决于原子元素以及用于操纵和测量量子比特状态的所需控制场类型。这些量子比特状态对于执行量子信息处理的最重要特征是 (a) 能级寿命长且表现出出色的相干性,(b) 能级状态具有适当的强光学跃迁到辅助激发态,允许通过光泵浦进行量子比特初始化并通过荧光进行量子比特检测,以及 (c) 量子比特通过可外部控制和门控的相干耦合进行交互。这将原子种类限制为少数元素和量子比特/自旋态,这些元素和量子比特/自旋态要么被编码为具有射频/微波频率分裂的单个外电子原子的 S 1 / 2 超精细或塞曼基态(例如,Be + 、Mg + 、Ca + 、Sr + 、Ba + 、Cd + 、Zn + 、Hg + 、Yb + ),要么被编码为具有光频率分裂的单个或双外电子原子的基态和 D 或 F 亚稳态电子激发态(例如,Ca + 、Sr + 、Ba + 、Yb + 、B + 、Al + 、Ga + 、In + 、Hg + 、Tl + 、Lu + )。某些种类(例如,Ba + 、Lu + 、Yb + )具有足够长的 D 或 F 亚稳态激发态寿命,以在其超精细或塞曼能级中承载量子比特,并具有射频/微波分裂。
非常规的铁电性型植物结构氧化物由于其出色的可伸缩性和硅兼容性而在纳米电子学上带来了巨大的机会。然而,由于可视化纳米晶体中的氧离子的挑战,它们的极化顺序和开关过程仍然难以捉摸。在这项工作中,极化开关和相关的极性 - 尖端相变中的氧转移在独立式ZRO 2薄膜中直接捕获在多个可稳态的相之间,而低剂量综合差异差异差相对比扫描传输电子(IDPC-STEM)。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。 同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。 这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。
分子动力学旨在模拟原子的物理运动,以便采样Boltzmann – Gibbs的概率度量和相关的轨迹,并使用Monte Carlo估计值来计算宏观特性[1,17]。执行这些数值模拟时的主要困难之一是标准化:该系统倾向于将其捕获在相空间的某些区域,通常在目标概率度量的局部最大值附近。在这种情况下,从一个亚稳态到另一个状态的过渡在复杂的系统中特别感兴趣,因为它们表征例如结晶或酶促反应。与分子时间尺度相比,这些反应长期尺度发生,因此对逼真的罕见事件的模拟在计算上很难。
空洞和空位环形成的概率几乎相等。空洞或空位环在何种条件下形成尚待推测;一般认为,除非有空洞成核位点且杂质原子稳定,否则不会形成空洞。如果不满足这些条件,原本会形成空洞的空位(或空洞胚胎)要么迁移到稳定的缺陷凹陷,即空位环,要么保持亚稳态瞬态配置。虽然后一种情况发生的概率较小,但本研究结果似乎支持其发生。当样品在辐照后冷却至室温时,这种配置可以保留,随后在相对较低的温度下重新加热时退火。
摘要:到目前为止,A15 NB 3 Si是在高压(〜110 GPA)下产生的唯一“高”温度超导体,该温度已成功地将其带回了在亚稳态条件下的房间压力条件。基于当前的极大兴趣,他们试图在高压下产生的室压高温超导体,我们重新爆炸地压缩了A15 NB 3 SI及其从Tetragonal NB 3 Si产生的生产。首先,在爆炸性压缩的A15 NB 3 Si材料上进行了高达88 GPA的钻石砧细胞压力测量,以跟踪T C作为压力的函数。t c在88 GPA时被抑制至〜5.2 k。然后,使用A15 NB 3 Si的这些T C(P)数据,在室温下(在5 K时在5 K时升高到120 GPa)在四方NB 3 Si上施加了高达92 GPA的压力。电阻率的测量结果没有任何A15结构产生的迹象。 e。没有A15 NB 3 Si的超导特征的迹象。这与四方NB 3 Si的爆炸性压缩(高达P〜110 GPA)相反,后者在1981年的Los Alamos国家实验室实验中产生了50-70%A15材料,在环境压力下T C = 18 K。这意味着由于爆炸性压缩而引起的伴随的高温(1000 O C)对于成功驱动四方的反应动力学是必不可少的。我们的理论计算表明,A15 NB 3 Si具有焓和四方结构,在100 GPa时为70 MeV/AtoM较小,而在环境压力下,四方相的焓低于A15相位的A15相位为90 MEV/ATOM。事实是,在室温下“退火”了A15爆炸性压缩材料39年没有效果表明,缓慢的动力学可以在很长一段时间内在环境条件下稳定高压亚稳态,即使对于90 MEV/原子的大驱动力也是如此。