简介 感谢您购买 RAZBAM 的 North American/Re-public T-2 Buckeye 飞机模型。RAZBAM 致力于为您提供这款迷人飞机的最精确模型,我们保证您将享受飞行的乐趣。T-2 Buckeye 是一种双座亚音速教练机,由两个轴流涡轮喷气发动机驱动(T-2J-1-S 也被称为 T-2A,由单个涡轮喷气发动机驱动)。Buckeye 专为现场维护条件而设计,可维修部件安装在腰部或更低的位置。因此,大多数日常维护(包括加油)都无需使用支架和梯子。在培训超过 11,000 名学生飞行员驾驶 18 种不同型号的海军喷气式飞机的同时,Buckeye 多年来建立了出色的安全性和可靠性记录,但随着机器的老化,它出现了一些问题,仅在 1997 年就因安全原因停飞了三次。经过 41 年的服役,北美 T-2“七叶树”喷气教练机已逐步淘汰,取而代之的是波音/BAE T�45A“苍鹰”。您购买的套装包含以下型号:T-2A(T-2J�1�S)、T-2B。美国海军和美国海军陆战队使用的 T-2C、委内瑞拉空军 (Fuerza Aérea Venezolana) 使用的 T-2E 和希腊空军 (Πολεμική Αερο π ορία) 使用的 T-2E。所有型号均可装载武器。T-2D 和 T-2E 已使用武器套件建模,在机翼上增加了另外两个挂载点。
教职人员 AC Mandal,博士(印度理工学院班加罗尔分校):实验空气动力学、流动不稳定性和过渡、湍流剪切流。 AK Ghosh,博士(印度理工学院):飞行力学、神经网络、飞行测试。 A. Tewari,博士(密苏里罗拉大学):飞行力学、气动伺服弹性、空间动力学和控制。 A. Kushari,博士(佐治亚理工学院):推进、燃烧、液体雾化、流动控制。 Abhishek,博士(马里兰大学帕克分校):旋翼机气动力学、未来垂直起降/短距起降系统、飞行器设计、无人机系统、逆飞行动力学和风力涡轮机。 Ajay Vikram Singh 博士(马里兰大学帕克分校):燃烧和反应流、燃烧产生的功能性纳米颗粒、烟灰形成和氧化、火灾动力学、爆轰和爆炸。Arun Kumar P. 博士(印度理工学院坎普尔分校):亚音速和超音速喷气机、流动控制、喷气声学。Ashoke De 博士(路易斯安那州立大学):计算流体力学、湍流燃烧、燃气轮机推进。CS Upadhyay 博士(德克萨斯 A&M 大学):计算力学、损伤力学。Debopam Das 博士(印度理工学院班加罗尔分校):理论和实验流体动力学、气动声学、不稳定性与过渡、涡旋动力学。非定常空气动力学、鸟类和昆虫的飞行。
无人机 (UAV) 在许多国家的野外侦察领域中都占有重要地位。续航能力是无人机的主要问题之一,通常大多数飞机使用普通燃料,会造成污染,而且使用寿命短且价格昂贵。因此,迫切需要使用非廉价的可耗尽能源作为燃料。太阳能是可利用的可持续能源之一。飞行器优化设计的简化和规划对于扩大使用范围以培育具有强大续航能力和可靠性的亚音速无人机具有重要意义。本文介绍了一种太阳能无人机的概念和初步设计方法,以实现更高的续航能力。为了对太阳能无人机进行理论计算,从现有飞机和无人系统统计获取了一些数据。通过对以前的无人机进行历史分析,可以更好地理解设计和最佳配置选择。本文的主要目的是设计一款高续航能力的固定翼太阳能无人机。在初步设计中,使用 Autodesk Fusion 360 软件设计机翼几何形状和无人机系统。此外,计算出合适的翼展为 4m,以完成 3-D 太阳能无人机的设计。性能分析已使用各种参数进行了理论计算。已经进行了深入研究,以找到所需的光伏太阳能电池和要安装在系统中的电池类型,以便将太阳能系统纳入其中以实现长续航能力。最终目标是设计和分析一款太阳能无人机,用于长续航应用,并配备电池和太阳能电池。关键词:太阳能无人机、长续航能力、概念设计、理论计算、电池、太阳能电池
[3] Bitter,M.,“亚音速和超音速流动中通用火箭模型的高重复率 PIV 调查”,Exp Fluids(2011)50:1019-1030,Springer,DOI:10.1007 / s00348-010-0988-8。 [4] Babuk,VA,“固体火箭推进剂燃烧产物中铝团聚体演变模型”,推进与动力杂志,第 18 卷,第 4 期,2002 年 7 月 - 8 月,DOI:10.2514/2.6005 [5] Desrochers,MF,“地面试验火箭推力测量系统”,烟火技术杂志,第 14 期,2001 年冬季,第 50-55 页。 [6] Penn,K.,“测量模型火箭发动机推力曲线”,《物理教师》,第 48 卷,第 9 期,2010 年 12 月,第 591-593 页,DOI:10.1119/1.3517023 [7] Pappu,S.,“卫星遥感在印度史前研究和遗产管理中的应用”,《考古学杂志》,第 37 卷,第 9 期,2010 年 9 月,第 2316-2331 页,DOI:10.1016/j.jas.2010.04.005 [8] Harridon,M.,“直升机 Guimbal Cabri G2 事故分析”,《国际科学与研究出版物杂志》,第 10 卷,第 12 期,2020 年 12 月,ISSN 2250-3153, DOI : 10.29322/IJSRP.10.12.2020.p10809 [9] Harridon,M.,“马来西亚警察航空联队搜救人员对搜救一般问题的看法”,《国际科学与研究出版物杂志》,第 10 卷,第 10 期,2020 年 10 月,ISSN 2250-3153,DOI : 10.29322/IJSRP.10.10.2020.p10630 [10] Campbell,TA,“航空航天工程课程的模型火箭项目:
氢可以在螺旋桨和喷气飞机中代替传统的碳氢化合物燃料。在螺旋桨推进的情况下,燃烧发动机的使用优于燃料电池和电动机。在燃料电池的螺旋桨上从化学能量到机械能的转化效率较大,但是除了较重之外,推进系统也更大。燃料电池对新型城市空气流动解决方案有更好的吸引力。燃气轮机发动机的杂交对螺旋桨和喷气推进是有益的。对氢飞机的建筑进行了强烈的修改,以接受更大的燃油箱,具有更大的质量能量,但比喷气燃料较大,但具有较小的体积特异性能源,该燃料储存的燃油箱在板上液体或冷晶中储存。共形储罐可以减少飞机的总体积与球形/圆柱罐,与使用新型复合结构来改善强度并减少储罐的重量相同。随着常规设计,最大捕获的重量略有减小,但是与碳氢化合物燃料相比,每次PAX和NM的能量消耗量大于8% - 15%。燃料电池螺旋桨推进器也遭受了电池和燃料电池堆的重量。非规定设计,例如混合翼和杂交可能有助于减少能源消耗。可再生式氢气 - 仅有的飞机需要在2035年全面部署之前进一步开发飞机技术,当时提供可再生氢的价格将是便宜且丰富的,并且机场基础设施也会开发出来。鉴于高超音速技术的进展以及与亚音速商业航空的协同作用,也可以引入高超音速可再生能源唯一的飞机。
自 1903 年 12 月 17 日,重于空气的飞机(称为莱特飞行器)在北卡罗来纳州基蒂霍克附近的 Kill Devil Hills 首次进行历史性的动力飞行以来,技术发生了革命性的变化,使普通大众能够通过 B737 到 B787 和 A310 到 A380 等商用飞机进行全球空中旅行,并且这种技术进步一直持续到今天。很明显,新一代飞行器将使用新材料、轻质优化的复合材料结构、带流动控制的先进气动配置、新的推进概念和使用 SAF、合成燃料、氢气、电池等燃料的技术来制造。此外,先进和革命性的导航和控制系统和航空电子设备正在开发中,先进的 ATM 和 NEXTGEN 正准备管理空域。以下各节描述了六个技术领域需要解决的关键挑战。 《航空航天工程前沿》期刊的目标是吸引从事所有这些挑战领域的研究人员撰写的高质量论文,并在经过严格的同行评审流程后,通过开放获取平台迅速向航空航天界提供这些论文。特别欢迎有关各种航空航天技术的多学科应用以及涉及未来航空航天配置/设计的论文,例如电动/混合动力和氢动力商用亚音速/跨音速飞机、低空超音速飞机、吸气式高超音速飞机以及电动无人机/无人驾驶飞机/微型飞行器。
具有增强的生存能力。非后掠翼设置可在高空巡航期间提供最大航程。全后掠位置用于超音速飞行和高亚音速低空穿透。轰炸机的进攻性航空电子设备包括合成孔径雷达 (SAR)、地面移动目标指示器 (GMTI)、地面移动目标跟踪 (GMTT) 和地形跟踪雷达、极其精确的全球定位系统/惯性导航系统 (GPS/INS)、计算机驱动的航空电子设备和战略多普勒雷达,使机组人员能够导航、更新飞行中的目标坐标和精确轰炸。当前的防御性航空电子设备包以 ALQ-161 电子对抗 (ECM) 系统为基础,由 ALE-50 拖曳诱饵和箔条和照明弹补充,以防御雷达制导和热寻的导弹。飞机结构和雷达吸收材料将飞机的雷达信号降低到 B-52 的大约百分之一。ALE-50 可以更好地抵御射频威胁。B-1A。美国空军在 20 世纪 70 年代获得了这种新型战略轰炸机的四架原型飞行测试模型,但该项目于 1977 年取消。四架 B-1A 型号的飞行测试一直持续到 1981 年。B-1B 是里根政府于 1981 年发起的改进型。第一架生产模型于 1984 年 10 月首飞,美国空军共生产了 100 架。B-1 于 1984 年 12 月 1 日在沙漠之狐行动中首次用于支援对伊拉克的作战。
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s
尽管朝鲜战争的大规模战斗得以结束,世界和平仍不稳定。美国和苏联这两个超级大国持有不同的意识形态,导致冷战期间双方反复对抗。对手扩大了核武库,但全球热核战争的威胁迫使对手通过代理人进行争夺霸权的斗争。远东局势的恶化和中东的一系列危机使向麻烦地区部署海军的传统做法具有了新的重要性。国际演习导致了威胁世界和平的事件和要求,海军在关键地区代表国家。在不同场合,这些部队疏散难民、巡逻动乱水域、为受威胁国家提供支持,并作为侵略者和被压迫者之间的堡垒,展现了自由的物质象征。技术和科学进步也标志着这一时期,海军航空经历了巨大的变化。这些进步的有效利用增强了海军海空军的火力、多功能性和机动性。制导导弹开始取代舰炮,舰队提高了发射核武器的能力,飞机速度从亚音速跃升至超音速,核动力对飞机的适应性正在研究中,对太空的了解不断增加影响了海军作战。空对空导弹成为拦截器的标准装备,舰船也配备了防空导弹。规划人员打算让战斗机在远距离和高空拦截苏联轰炸机,并错误地从麦克唐纳飞机公司 F4H-1 幻影 II 的初始设计中删除了机枪,海军未能纠正这一错误。空军在随后的越南战争中积累了丰富的经验
哈佛·洛马克斯 (1922-1999) 哈佛·洛马克斯是计算流体力学 (CFD) 领域的先驱,他将有限差分技术应用于大规模并行计算,加速了该领域的发展。从 1944 年到 1994 年,他的研究生涯长达 50 年,奠定了 NASA 艾姆斯研究中心在该领域的领导地位。高层管理人员认识到洛马克斯工作的理论和实践潜力,将 CFD 确立为实验室的战略方向。他们为艾姆斯研究中心带来了许多在洛马克斯指导下精通计算机的空气动力学家。20 世纪 70 和 80 年代,随着管理层为研究人员提供的计算机能力不断增强,CFD 在艾姆斯研究中心也不断发展,使得数值风洞取代真实风洞成为评估气流的主要方法。洛马克斯对 CFD 的主要贡献是计算了飞机在达到音速时周围的非稳定气流。洛马克斯并不是 CFD 的发明者。该领域的创始人应归功于约翰·冯·诺依曼,他在二战后在洛斯阿拉莫斯国家实验室从事有限差分技术研究。1 此外,埃姆斯的其他理论家,包括米尔顿·范戴克、弗兰克·富勒和比尔·默斯曼,对流体流动的计算工作都早于洛马克斯。然而,当其他人还在计算亚音速和超音速流动的影响时,洛马克斯已经解决了最复杂流动的方程,这为