行业的一个重要目标是减少碳足迹 [5]。节约能源的一种方法是用亚麻等天然纤维代替玻璃纤维 [6]。此外,亚麻能够提高层压板的阻尼性能,这一点众所周知,而且对于提高损伤容限可能很有吸引力 [7]。将纤维添加到聚合物中可以提高拉伸性能,使用偶联剂后拉伸性能会提高更多 [8]。与其他天然纤维和合成纤维相比,亚麻纤维具有特定的强度和特定的刚度。亚麻纤维具有多种特性,但也存在一些缺点 [9]。这些缺点是纤维是亲水性的,文献中观察到复合材料受湿度和温度等环境变化的影响很大,这会导致纤维增强复合材料的机械性能下降,这是由于纤维膨胀和基质老化造成的 [10]。纤维中的水分吸收遵循菲克扩散定律(扩散
亚麻 ( Linum usitatissimum ) 也称为普通亚麻或亚麻籽,在温带地区作为油料和纤维作物种植,可能已被人类使用长达 30,000 年 ( Kvavadze et al., 2009 )。纤维亚麻是栽培亚麻的主要形态类型之一,也是驯化作物中最古老的形态,为人类提供了纤维来源 ( Hickey, 1988 )。据报道,对纤维亚麻 ( 纤维用途 ) 和亚麻籽亚麻 ( 油料用途 ) 的破坏性选择导致植物类型在形态、解剖学、生理学和农艺性能上存在很大差异 ( Diederichsen and Ulrich, 2009 )。纤维亚麻比油料用途亚麻相对较高、分枝较少、种子较少 ( Zhang et al., 2020 )。在过去十年中,纤维工业开发出高价值产品,应用于汽车、建筑工业、生物燃料工业和纸浆(Diederichsen 和 Ulrich,2009 年)。亚麻制成的纺织品在西方国家被称为亚麻布,传统上用于床单、内衣和桌布。亚麻仍然是一种小作物,主要原因是过去十年来其产量过低(Soto-Cerda 等人,2014 年)。准确的参考基因组已成为遗传学研究不可或缺的资源,尤其是对于功能基因图谱和标记辅助选择(MAS)。亚麻基因组的组装可以显著加速亚麻育种的进程。受益于亚麻参考基因组的发布,人们获得了不少与重要农艺性状相关的候选基因 ( Soto-Cerda et al., 2018; Xie et al., 2018a,b; You et al., 2018b; Guo et al., 2020 )。第一个亚麻基因组组装于 2012 年使用 Illumina 短双端和配对读段 (CDC Bethune v1) 发布 ( Wang et al., 2012 )。随后,You 等人使用光学、物理和遗传图谱 (CDC Bethune v2) 将这些碎片化的重叠群锚定到 15 个假分子中 ( You et al., 2018a )。最近还使用短双端读段和 Hi-C 测序发布了三个不同品种的基因组组装 ( Zhang et al., 2020 )。几个月前首次发表了使用错误长读长的亚麻组装体(Dmitriev et al., 2021)。然而,即使使用 Oxford Nanopore 长读技术,所有这些组装体的连续性都非常差。这些组装体最大的重叠群 N50 为 365 Kb。亚麻基因组最近经历了全基因组复制 (WGD) 事件,充满了重复元素(You et al., 2018a)。在使用短读长或错误长读长的组装过程中,同源序列或重复序列之间很容易发生崩溃。使用不同的软件和 Oxford Nanopore 长读长组装体,组装体大小差异很大,证明了这一点(Dmitriev et al., 2021)。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
自古以来,人们就种植亚麻 ( Linum usitatissimum L. ) 以获取种子和纤维 ( Vaisey-Genser 和 Morris,2003 年 )。纤维亚麻比亚麻籽高,仅在茎的上部有分枝。亚麻籽的分枝从茎的中部开始,这些植物会产生许多大种子 ( Diederichsen 和 Richards,2003 年 )。亚麻籽富含 omega-3 脂肪酸和木脂素,其健康益处已在许多研究中得到证实 ( Caligiuri 等人,2014 年;Goyal 等人,2014 年;Kezimana 等人,2018 年;Parikh 等人,2019 年 )。因此,亚麻籽被用于食品和制药工业、动物饲料以及环保涂料和复合材料的生产(Singh 等人,2011;Corino 等人,2014;Goyal 等人,2014;Campos 等人,2019;Fombuena 等人,2019)。亚麻纤维是主要由纤维素组成的空心管;它们具有高强度和耐久性,可用于生产高质量的纺织品(Vaisey-Genser 和 Morris,2003)。亚麻纤维由于表面的芯吸和水分移动而具有很高的吸水能力,可用于制作炎热气候下的布料、帆、帐篷和地毯(Atton,1989)。然而,只有从亚麻茎的没有分支的部分才能获得长纤维;因此,尽管亚麻纤维质量很高,但它在很大程度上已被合成纤维所取代 ( Muir 和 Westcott,2003 年)。然而,对生态问题的认识引起了人们对使用对地球更具可持续性的材料的关注,人们对亚麻纤维的兴趣正在重新燃起。此外,在过去几年中,亚麻纤维已被积极用作复合材料的组成部分,在汽车、航空航天和包装应用中具有良好的潜力,在这些应用中,纤维长度并不十分重要 ( Zhu 等人,2013 年;Mokhothu 和 John,2015 年;Wu 等人,2016 年;Dhakal 和 Sain,2019 年;Fombuena 等人,2019 年;Goudenhooft 等人,2019 年;Zhang 等人,2020 年 a)。 2012 年,亚麻品种 CDC Bethune 的基因组在 Illumina 平台上进行了测序,采用双端和配对文库。结果组装结果为 302 Mb,其中 scaffild N50 约为 700 kb,contig N50 约为 20 kb,亚麻基因组覆盖率估计为 370 Mb,为 81%(Wang et al., 2012)。15 对 CDC 染色体的染色体水平组装
本研究的首要目标是探讨天然纤维复合材料在航空结构中的应用潜力,尤其是直升机结构。将使用亚麻纤维复合材料作为环氧预浸料的各种实证研究来实现这一目标。进行并评估结构力学分析试验,包括拉伸、弯曲、冲击和碰撞试验。在有限元法框架内进一步开发和应用现有材料模型,研究超轻型直升机的尾翼和机舱门在高度生物基混合设计中的机械性能。元素、子组件和组件级别的迭代验证支持零件的混合和开发。拉伸试验表明,亚麻纤维复合材料的应力-应变行为呈非线性,被描述为双线性。这一发现以失效准则的形式纳入设计中。此外,将织物编织的结构机械性能与连续单向纤维复合材料进行了比较。编织亚麻复合材料的机械性能低于预期,单向增强层压板的应用被认为是更好的选择。对最终制造的部件也进行了实证分析,同时验证了它们的模拟和派生的材料模型。其他研究涉及亚麻纤维复合材料的吸湿性,以及对无损检测方法的适用性。亚麻广为宣传的优越的阻尼性能也可以得到验证。关于使用天然纤维复合材料的动机,通过比较生产和报废时所体现的能量与使用寿命内与质量相关的排放,评估了设计部件的生态效率。可以看出,节省原材料生产可以弥补小幅额外的质量损失,并且仍然可以带来整体有益的生态效率。总之,与传统纤维复合材料相比,分析了亚麻纤维复合材料的几种特性。研究结果和确定的趋势为进一步详细调查研究和为航空及相关行业的应用提出建议提供了基础。