摘要:在远离现有功能的化学反应中对位点选环的控制仍然是合成化学的挑战。我们描述了一种策略,该策略使三个最常用的交叉耦合过程具有对带有酸性官能团的二氯烯烯的高位点选择性。我们通过重新利用已建立的磺化磷酸配体来利用其固有的分支性来实现这一目标。的机理研究表明,磺酸盐基团与去质子化底物的相关阳离子进行了有吸引力的静电相互作用,从而将交叉耦合引导至芳烃元位置的氯化物。在考虑与直接催化的非交互相互作用时,这种阴离子配体和阴离子底物恶魔的违反直觉组合构成了另一种设计原理。
配置,这对于集成应用程序很方便。此外,由于其高Q值和高功率能力,它们具有广泛的应用。在参考文献13中,设计了TM01模式单片介电滤波器,该滤光滤光片结合了使用带有低二电恒定恒定支撑的U形金属探针实现的负耦合。在参考文献14中,使用深层盲孔来基于介电波导结构实现负耦合。在参考文献15中分析了波导滤波器电容电容式负耦合理论。但是,这些类型的耦合需要高加工精度,并且需要一次成型,这不利于质量生产。这项研究涉及基于介电波导腔的一种正耦合结构的建议以及负耦合结构。该结构涉及一种集成的设计,可以通过简单地通过二线波导中的孔或盲孔来实现。在预期的位置钻孔或盲孔发射并模压滤波器的介电波导后,并且介电波导的表面完全金属化并同时涂层,这对于制造和调试非常方便。以四阶带通滤波器为例,本研究涉及一种介电波 - 导向器交叉耦合过滤器的设计。正耦合使用两个浅盲孔在对称的上方和下方的两个浅盲孔中,而中间通过一个连接两个盲孔的孔。负耦合是使用对称上方和下方的两个浅盲孔实现的。分析了正耦合设计理论,并阐明了过滤器的正向设计过程。制成的过滤器的总尺寸为27×27×5 mm,中心频率为3.5 GHz。带宽为5%,插入损失小于0.5 dB,带内的返回损耗大于15 dB,并且在3.25和3.65 GHz时产生了两个带外的传输零。
摘要 — 由于生物医学信号幅度非常低,且具有与环境噪声类似的高共模特性,因此用于这些信号的放大器应具有高 CMRR。交叉耦合放大器对差分和共模信号的负载行为导致高 CMRR,因此会强烈衰减共模信号。由于交叉耦合放大器差分增益较低,因此其负载与电流复用运算放大器相结合。在 0.18 µm CMOS 技术中,模拟并比较了具有传统共模反馈和改进负载的全差分电流复用 OTA 的最终 CMRR。模拟了它们的 CMRR 失配和工艺变化。根据模拟结果,对于相同的功耗 W 和 L,改进的交叉耦合负载电流复用具有最佳性能。在最坏情况下,其 CMRR 约为 90 dB,而总功耗在 1.8 V 电源电压下为 18 µW。带宽为 4.8 kHz,此带宽内的总输入参考噪声为 1.04 µV rms 和 0.43 µV rms(0.5 至 100 Hz),这对于本研究中考虑的 EEG 应用来说是可接受的噪声和带宽。
在量子场理论的背景下,研究了最近提出的可集成性破坏性扰动的分类。使用随机矩阵方法诊断所得的量子混沌行为,我们通过考虑poissonian和wigner-dyson分布之间的交叉分布在被截断为有限的二维Hilbert空间的系统中,研究了大规模标量的φ4和φ6相互作用。我们发现,跨界耦合与旋转链中的体积的缩放缩放的天真延伸并不能为量子场理论带来令人满意的结果。相反,我们证明,考虑到交叉耦合与粒子数量的缩放率会产生强大的特征,并能够区分φ4和φ6量子场理论中的可集成性破坏的强度。
摘要:本文提出了一种具有宽调谐范围的超低功耗 K 波段 LC-VCO(压控振荡器)。基于电流复用拓扑,利用动态背栅偏置技术来降低功耗并增加调谐范围。利用该技术,允许使用小尺寸的交叉耦合对,从而降低寄生电容和功耗。所提出的 VCO 采用 SMIC 55 nm 1P7M CMOS 工艺实现,频率调谐范围为 22.2 GHz 至 26.9 GHz,为 19.1%,在 1.2 V 电源下功耗仅为 1.9 mW–2.1 mW,占用核心面积为 0.043 mm 2 。在整个调谐范围内,相位噪声范围从 -107.1 dBC/HZ 到 -101.9 dBc/Hz (1 MHz 偏移),而总谐波失真 (THD) 和输出功率分别达到 -40.6 dB 和 -2.9 dBm。
多热效应是指在同时或依次施加或去除外部刺激的情况下,材料的温度或熵发生变化。其前提条件是材料具有多种铁性状态。但很少有报道直接测量这种效应。现在,出于这个原因,我们构建了一个测量装置,可以同时确定脉冲磁场和单轴载荷影响下的绝热温度变化。我们选择全 d 金属 Heusler 合金 Ni-Mn-Ti-Co 进行首次测试,因为它具有增强的机械性能和巨大的磁热效应和弹热效应。Ni-Mn-Ti-Co 暴露于高达 10 T 的脉冲磁场和高达 80 MPa 的单轴应力,并测量相应的绝热温度变化。利用我们的新实验工具,我们能够更好地了解多热材料并确定它们对不同刺激的交叉耦合响应。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
TL7700-SEP 中主要的单粒子效应 (SEE) 事件是单粒子闩锁 (SEL)。从风险/影响的角度来看,SEL 的发生可能是最具破坏性的 SEE 事件,也是太空应用的最大隐患。TL7700-SEP 使用了双极工艺 JI1。CMOS 电路可能会产生 SEL 和 SEB 敏感性。如果高能离子通过引起的过量电流注入足以触发寄生交叉耦合 PNP 和 NPN 双极结构的形成(形成于 p-sub 和 n-well 以及 n+ 和 p+ 触点之间),则可能会发生 SEL。单事件引发的寄生双极结构在电源和接地之间形成高电导路径(产生通常比正常工作电流高几个数量级的稳态电流),该路径持续存在(“锁定”),直到断电或设备被高电流状态破坏。TL7700-SEP 在重离子 LET EFF 高达 43 MeV-cm 2 /mg 时未表现出 SEL,通量为 10 7 离子/cm 2 且芯片温度为 125°C。
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
摘要 — 5G 标准的采用要求新的无线设备不仅支持传统的 RF 频段,还支持高达 40GHz 及以上的 mmW 频率。这种 mmW 硬件通常需要窄带 LC 谐振电路才能实现高效、低噪声运行。对于宽调谐的软件定义系统,由于缺乏实用的固态可调电感元件,无法实现多倍频程 LC 调谐,从而限制了软件定义无线电的 mmW 性能。在本文中,我们首次在未经修改的 28nm FDSOI CMOS 中提出了一种新型、紧凑、集中/分布式 LC 等效谐振器,该谐振器能够在超过四个倍频程的频率上进行连续调谐,同时保持实用的品质因数。该谐振器用于实现可从 3.1 GHz 调谐至 51GHz 以上的交叉耦合 LC VCO,所需面积小于 0.208mm 2,功率小于 8mW,并实现多倍频程可调 mmW VCO 的 -198.2dBc/Hz 的峰值 FOM T 最先进的水平。关键词 — 可调电路、数控振荡器、压控振荡器、毫米波、宽带、可调滤波器、5G、FMCW 雷达