在这项研究中,将提取牛奶废水,并使用酯交换器转化为脂解微生物的生物柴油(LMD),并测试适当性,作为IC发动机的替代,可持续的,可再生的可再生能源。研究了生物柴油中创建的混合物的性能,并将其与常规柴油的混合物进行了比较。结果表明,与整洁的柴油讨论了燃料的基本特征。研究的是在LMD上运行的测试引擎的操作,燃烧和排气分析。研究涉及在单缸直接注射柴油发动机中以恒定的快速速度(0、25、50、75和100%)在不同的载荷(0、25、50、75和100%)下运行不同的生物柴油柴油混合物(B10,B20,B30,B40,B40,B50和B80)。断裂热效率(BTE)的值降低
背景:ICU 中所有使用机械通气的患者都必须对吸气气体进行加湿,可以使用加热加湿器 (HH) 或热湿交换器 (HME)。最近的研究表明,对于 COVID-19 患者,加湿设备的选择可能会对患者的管理产生相关影响。我们报告了 2 个使用 HME 或 HH 的 ICU 的数据。方法:审查了魁北克市 2 个 ICU 中第一波疫情期间需要有创机械通气的 COVID-19 患者的数据。其中一个 ICU 使用了 HME,而另一个 ICU 使用了加热丝 HH。我们比较了呼吸机设置和调整呼吸机设置后第一天的动脉血气。报告了气管插管阻塞 (ETO) 或亚阻塞事件以及限制加湿不足风险的策略。在台架试验中,我们用湿度计测量了不同环境温度下 HH 的湿度,并评估了其与加热板温度的关系。结果:我们报告了 20 名 SARS-Cov-2 阳性受试者的数据,其中 6 名在使用 HME 的 ICU 中,14 名在使用 HH 的 ICU 中。在 HME 组中,尽管每分钟通气量较高(171 vs 145 mL/kg/min 预测体重 [PBW]),但 P aCO 2 较高(48 vs 42 mm Hg)。我们还报告了在使用 HH 的 ICU 中发生了 3 次 ETO。湿度台架研究报告了 HH 的加热板温度与输送湿度之间存在很强的相关性。在采取措施避免湿度不足后,包括监测加热板温度,不再发生 ETO。结论:COVID-19 患者使用的加湿装置的选择对通气效率(增加 CO 2 去除率,减少死腔)和与低湿度相关的并发症(包括在高环境温度下使用加热丝 HH 时可能出现的 ETO)有相关影响。关键词:加热加湿;热湿交换器;死腔;CO 2;COVID-19;气管插管阻塞。[Respir Care 2022;67(2):157–166。© 2022 Daedalus Enterprises]
圆锥形的喇叭口模具允许靠近弯道线的管道,并靠近弯道,远离操作机。以前,使用扁平模具将金属管固定在耀斑的机器中。但是,由于对机器面的干扰,无法处理具有复杂返回弯曲配置的试管。这样的管必须用档案和刀手工面对。新的圆锥形模具将管夹具伸向机器脸部,以便可以容纳返回弯曲管。的好处包括质量更好的耀斑,在操作中消耗的时间较少以及更高的安全系数。新的固定模具是对管子燃烧的现有扁平式方法的修改。制造了一个新的轴来保持现场面孔。现场赛车手由固定螺丝固定在轴上。支架不是同心与轴的同心;但是,将机器调整为互补的偏心运动,该运动导致现场面孔旋转而不会摇摆。这些信息对锅炉制造商和热量交换器制造商特别感兴趣。
当前的论文介绍了在Horizon 2020 EU框架计划下资助的正在进行的思想研究项目的最先进。该项目涉及来自六个欧洲国家的14个合作伙伴,并提出了一个多源具有成本效益的可再生能源系统,以供建筑物信封的脱碳。该系统具有由热泵为建筑物热管理提供的辐射地板。热泵可以通过使用光伏/热太阳能电池板,空气热交换器和浅层平板式热交换器来利用阳光,空气和/或地面作为热源。通过相变材料沿几个系统组件扩散的相位材料,例如:辐射地板以增加其热惯性,太阳能电池板用于冷却,以增强土壤热容量。在项目框架内,一个小规模的建筑物,具有大量的传感器用于测试目的,两座大型建筑物旨在配备提议的可再生能源系统。小规模建筑目前正在运行中,目前的工作中讨论了第一个结果。初步数据表明,虽然多源系统加上热泵特别有效,但在城市规模上获得合适的热能储藏很复杂。
交换器是充分使用用于传热的设备。这些设备通过在两个luids之间提供热量交换来在杂色的工商管理和建筑物中发挥最新作用。但是,随着时间的流逝,交换机可能会遇到诸如污染和沉积物堆积之类的各种问题。这可以降低传热效率,从而导致能源浪费和设备故障。钙化是一个问题,当水被硬矿物饱和并超过这些矿物质的溶解度时,它出现了。这些矿物是由于蒸发或化学反应而沉淀的,并形成了一个称为石灰石的固体层。limescale可以在房屋,工商管理和水运输系统中带来各种问题。石灰在传热上积聚,从而减少了这些超级物质的超级区域。这减少了可用于传热的超级区域并抑制传热。石灰的热导率低于水。刻度是在热传递上的刻度层的形成,可降低这些超级速度的导热率并防止传热。本研究的重点是热交换器中污染的类型,污染对传热和其他因素的影响以及堵塞方法。
术语 缩写 AC 吸收式制冷机 ACS 吸收式制冷系统 AMIS® 汞和硫化氢减排(意大利语) BTES 钻孔热能存储 CCS 碳捕获和存储 EES 工程方程求解器 ESS 能量存储系统 ETSC 真空管太阳能集热器 FPSC 平板太阳能集热器 GE 地热能 GHE 地热交换器 GIS 地理信息系统 GPP 地热发电厂 GSHP 地源热泵 HOMER 电力可再生能源混合优化模型 HP 热泵 KC 卡林纳循环 LNG 液化天然气 MGS 多联产系统 NCG 不凝性气体 ORC 有机朗肯循环 ORFC 有机朗肯闪蒸循环 PEM 质子交换膜 PTSC 槽式太阳能集热器 PV 光伏 RC 朗肯循环 RES 可再生能源 RO 反渗透 RTV 朗肯槽式蒸汽 SC 太阳能集热器 VAC 蒸汽吸收循环 VTR 蒸汽槽式朗肯 下标
葫芦科作物是研究园艺植物长距离信号传导的合适模型。尽管数千种物质可通过嫁接传递到葫芦科植物中,但由于缺乏有效的遗传转化系统,功能研究受到了阻碍。本文,我们报告了一种方便有效的几种葫芦科作物根部转化方法,该方法将有助于研究功能基因和茎-根串扰。我们在 6 周内获得了根部完全转化和非转基因茎部的健康植物。此外,我们将这种根部转化方法与嫁接相结合,从而可以在砧木中进行基因操作。我们通过使用黄瓜 (Cucumis sativus)/南瓜 (Cucurbita moschata Duch.)(接穗/砧木)嫁接探索耐盐机制来验证我们的系统,其中在南瓜砧木中编辑了钠转运蛋白基因高亲和力 K + 转运蛋白 1 (CmoHKT1;1),并通过在黄瓜根中过度表达南瓜液泡膜 Na + /H + 反向转运蛋白基因钠氢交换器 4 (CmoNHX4)。
AHFS类别:80:12仅IPV RX说明IPOL®,由Sano-Fasteur SA生产的poliovirus疫苗灭活,是三种类型的脊髓灰质炎病毒:类型1(Mahoney),类型2(MEF-1(MEF-1)和类型3(Saukett))的无菌悬架。IPOL疫苗是一种高度纯化的,灭活的脊髓灰质炎病毒疫苗,具有增强的效力。三种脊髓灰质炎病毒菌株中的每一个分别生长在Vero细胞中,Vero细胞是在微载体上种植的猴肾细胞的连续系列。(1)(2)这些细胞在鹰记录的修饰培养基中生长,并在使用前对未定药测试的新生小牛血清补充,起源于不含牛海绵状脑病的国家。为了病毒生长,培养基被M-199取代,而无需小牛牛血清。这种培养技术和静脉病毒抗原的纯化,浓度和标准化的改善可产生比1988年以前在美国提供的灭活性脊髓灰质炎病毒疫苗(IPV)更有效,更一致的免疫原性疫苗。(3)(4)在澄清和填充后,病毒悬浮液通过超滤波浓缩,并通过三个液相色谱步骤纯化;阴离子交换器的一列,一列的凝胶滤光片,然后是阴离子交换器的一列。在用中等M-199的纯净病毒悬浮液重新平衡并调整抗原滴度后,单价viral悬浮液在 +37°C下以1:4000福尔马林的形式在 +37°C下灭活至少12天。每种剂量(0.5 mL)的三价疫苗均配制为1型1型抗原单位,其2型抗原单位和32 d型抗原单位的3型抗原单位。对于每批IPOL疫苗,使用D-抗原ELISA分析在体外确定D-抗原含量。IPOL疫苗是用用M-199培养基稀释的疫苗浓缩物产生的。也存在2-苯氧乙醇的0.5%,每剂量的最大甲醛的0.02%作为防腐剂。新霉素,链霉素和多粘菌素B用于疫苗的产生;而且,尽管纯化程序可以消除可测量的量,但仍可能存在每剂量的5 ng neomycin,200 ng链霉素和25 ng多氧化肌蛋白B。残留的小牛牛血清白蛋白在最终疫苗中小于50 ng/剂量。该疫苗清晰无色,应在肌肉内或皮下施用。小瓶塞子不是由天然橡胶乳胶制成的。临床药理学脊髓灰质炎是由类型1、2或3的脊髓灰质炎病毒引起的。它主要是通过粪便的传输途径传播的,但也可以通过咽路线传播。
基因组编辑技术为动物育种提供了新的可能性,并有助于理解宿主-病原体相互作用。在家禽中,逆转录病毒是最难通过常规策略(例如疫苗接种)控制的病原体之一。禽白血病病毒亚群 J (ALV-J) 是一种致癌、免疫抑制性逆转录病毒,可导致鸡的髓性白血病和其他肿瘤。由于根除策略低效和缺乏有效疫苗,ALV-J 造成的严重经济损失在世界许多地方仍然是一个未解决的问题。ALV-J 附着和进入是通过特定受体鸡 Na + /H + 交换器 1 型 (chNHE1) 介导的。chNHE1 中非保守氨基酸色氨酸 38 (W38) 对病毒进入至关重要,使其成为引入抗病性的有利靶标。在本研究中,我们利用 CRISPR/Cas9 系统结合同源定向修复,通过精确删除 chNHE1 W38,在商业鸡系中获得了 ALV-J 抗性。基因改造完全保护细胞免受 J 亚组逆转录病毒的感染。W38 删除对基因编辑鸡的发育和总体健康状况均没有负面影响。总体而言,通过精确基因编辑产生 ALV-J 抗性鸟类表明这种方法作为家禽替代疾病控制策略的巨大潜力。
通过提高化石燃料价格及其对温室气体(GHG)的影响,研究人员正在尝试开发节能技术(Erdem等,2016)。在寒冷的气候中,减少温室加热能源消耗是温室存在的重要参数(Mathala等,2002)。已经进行了许多研究工作,以改善活性和被动温室类型的能量(Alkilani等,2011)。有几种方法,例如热绝缘,太阳能,地球到空气热交换器,地热能和不同的热储存系统(Beshada等,2006; Mashonjowa et al 2013; Patil等人2013; Patil等人2013; Sethi et al 2013; Sethi et al 2013; Zhang et al 2013; Zhang et al 2015; bin et al 2016; Bin et al 2016》; Bin等人2016; Jieyu et al 2017; we et et et et et et et et et et et 2017; we et e e e e e e e e e e e e e e e ii II II II。据报道,这些方法中的每种方法在特定的气候条件下都是有效的。