血液代谢物是反映遗传和环境因素相互作用的小分子,并作为复杂的细胞调节途径的最终产物,被认为是疾病过程的可靠指标(Wang等,2019)。这样的一组代谢物是分支链氨基酸(BCAA),包括亮氨酸,异亮氨酸和缬氨酸,这对于蛋白质合成至关重要,需要饮食摄入。研究已将BCAA摄入水平与多种疾病联系起来,例如高血压,动脉粥样硬化,心脏病,心力衰竭,癌症和胰岛素抵抗(Grajeda-iglesias和Aviram,2018; Nie等,2018; Flores-Guerrero et al。有趣的是,积累证据表明BCAA可以触发神经退行性变化并参与神经退行性疾病的发病机理(Yoo等,2022)。
fi g u r e 5在PCA的两个第一组件中,用水物理化学特性和溶解有机物(DOM)质量以及在不同深度和白天/夜间测量的沉积物酶活性和有氧呼吸。箭头指示每个变量最强烈影响数据分散的方向。Bix,生物指数; cond,电导率; DOC,溶解的有机碳; FI,荧光指数; GLU,β葡萄糖苷酶活性; hix,嗡嗡声指数; Leu,亮氨酸氨基肽酶活性; O2,溶解氧; PHO:磷酸酶活性;氧化还原,氧化还原电势; REZ,有氧呼吸(芦佐蛋白消耗); suva,特定的紫外吸光度;温度,温度。
富亮氨酸重复激酶 2 (LRRK2) 基因突变与家族性和散发性帕金森病 (PD) 病例有关,但也可发现于免疫相关疾病患者,如炎症性肠病 (IBD) 和麻风病,这将 LRRK2 与免疫系统联系起来。根据这一遗传证据,在过去十年中,有研究表明 LRRK2 可在全身和中枢神经系统水平上调节炎症反应。在本综述中,我们概括了 LRRK2 在 PD 和炎症性疾病模型中的中枢和外周炎症中的作用。此外,我们讨论了 LRRK2 抑制剂和抗炎药物如何有助于降低 LRRK2 突变携带者和 PD 患者的疾病风险/进展,从而支持 LRRK2 作为一种有前途的 PD 疾病改良策略。
Tillgren V 、Ho JCS、Önnerfjord P、Kalamajski S。新型富含亮氨酸的小蛋白软骨粘连素样 (CHADL) 在软骨中表达并调节软骨细胞分化。生物化学杂志。2015 年;290(2):918-925。doi: 10.1074/jbc.M114.593541。Styrkarsdottir U 等人。全基因组测序确定了与髋关节骨关节炎高风险相关的 COMP 和 CHADL 中的罕见基因型。自然遗传学。2017 年;49(5):801-805。doi: 10.1038/ng.3816。D'Costa S、Rich MJ、Diekman BO。由纯合敲除细胞周期抑制剂 p21 的原代人类软骨细胞制成的工程软骨。正在出版,《组织工程》。
植物发展了先天免疫系统,以激活抗病性机制并抵御微生物入侵者。该系统包括由两类免疫受体引发的两个主要信号级联反应,即细胞表面免疫受体,也称为模式识别受体(PRRS)和细胞内免疫受体,也称为核苷酸结合结构域亮氨酸重复受体(NLR)。PRR和NLR具有不同的生化活性,并通过很大程度上独立的机制激活。但是,下游免疫反应和输出非常相似,表明两种途径之间的连通性和收敛性。的确,最近的研究显着提高了我们对两个cas虫之间相互依存与相互增强的亲密关系的理解。植物先天免疫的联合视图正在出现。
表1针对目前正在研究帕金森氏病疾病的特定分子途径的选定候选药物。缩写α -syn /α-苏核蛋白; Alpha-synclein,AAV9;腺相关病毒载体9,ADAS-COG;阿尔茨海默氏病评估量表 - 认知子量表,ATP;三磷酸腺苷,C-ABL; Abelson酪氨酸激酶,CGIC;临床医生对变革的全球印象,中枢神经系统;中枢神经系统,CSF;脑脊液,GCASE;葡萄糖脑苷酶,LRRK-2;富含亮氨酸的重复激酶2,Madrs-2; Montgomery Asberg抑郁级评级量表,MDS-UPDRS;运动障碍社会统一的帕金森病评级量表,NMS;非运动症状量表,SNCA; α突触核蛋白基因,pd。
表 1 目前正在研究用于治疗帕金森病的特定分子通路的候选药物。缩写 α -syn /α -突触核蛋白;alpha-突触核蛋白,AAV9;腺相关病毒载体 9,ADAS-cog;阿尔茨海默病评估量表-认知分量表,ATP;三磷酸腺苷,c-Abl;阿贝尔森酪氨酸激酶,CGIC;临床医生对变化的总体印象,CNS;中枢神经系统,CSF;脑脊液,GCase;葡萄糖脑苷脂酶,LRRK-2;富含亮氨酸重复激酶 2,MADRS-2;蒙哥马利阿斯伯格抑郁量表,MDS-UPDRS;运动障碍协会统一帕金森病评定量表,NMSS;非运动症状量表,SNCA; Alpha Synnuclein 基因,PD。
Test Includes: Taurine, threonine, serine, asparagine, hydroxyproline, glutamic acid, glutamine, aspartic acid, ethanolamine, sarcosine, proline, glycine, alanine, citrulline, alpha-aminoadipic acid, alpha-amino-n-butyric acid, valine, cystine, cystathionine, methionine,异亮氨酸,亮氨酸,酪氨酸,苯丙氨酸,β-丙氨酸,β-氨基糖酸,鸟氨酸,碱性,赖氨酸,1-甲基组织,组氨酸,3-甲基激素,三甲基激素,精氨酸氨基糖苷,精氨酸糖酸酸,异糖酸酯,异糖素,粘膜酸氨基酸氨基酸盐,硫糖酶蜂窝状菌株, - 糖胞和蜂窝状菌株,糖胞和糖胞和蜂窝状菌株,色氨酸和精氨酸。在NMOL/mg肌酐中报道。
在植物中,NLR(核苷酸结合域和富含亮氨酸重复序列)蛋白通过形成聚集在质膜上的抗性小体来执行先天免疫。然而,NLR 抗性小体靶向其他细胞膜的程度尚不清楚。在这里,我们表明辅助 NLR NRG1 与多个细胞器膜结合以触发先天免疫。与其他辅助 NLR 相比,NRG1 和密切相关的 RPW8 样 NLR(CC R -NLR)具有延长的 N 端和独特的序列特征,使它们能够组装成比典型的卷曲螺旋 NLR(CC-NLR)抗性小体更长的结构。活化的 NRG1 通过其 N 端 RPW8 样结构域与单膜和双膜细胞器结合。我们的研究结果表明,植物 NLR 抗性小体在各种细胞膜位点聚集以激活免疫。
心血管疾病(CVD)仍然是全球死亡率的主要原因。核苷酸寡聚结构域 - 富含亮氨酸的重复和含吡啶结构域的蛋白3(nlrp3)含量含量与多种类型的CVD有关。作为先天免疫的一部分,nlrp3界面症具有至关重要的作用,需要启动和激活信号才能触发炎症。nlrp3炎症杂志既导致IL-1家族细胞因子的释放,又导致了一种不同形式的编程细胞死亡,称为pyroptoposis。与CVD相关的炎症已与NLRP3浮游生物相关的广泛研究。在这篇综述中,我们描述了触发NLRP3启动和激活的途径,并讨论其对CVD的致病作用。这项研究还概述了针对NLRP3浮游生物的潜在治疗方法。