酵母基因组删除项目 (SGDP) 使用五株源自酿酒酵母 S288C 的 Dharmacon 酵母敲除 YKO 亲本菌株,生成了一套几乎完整的酵母开放阅读框 (ORF) 敲除。1 使用基于 PCR 的策略将每个 ORF 替换为 KanMX 盒,该盒包含每个删除的独特标签“条形码”。生成了四个不同的突变体集合:交配类型 MATa 和 MATalpha 的单倍体、非必需基因的纯合二倍体和包含必需和非必需 ORF 的杂合二倍体。存储:
图 1 hiPSC-NSC 的生成和核型分析。A、在 Matrigel 上生长的 R-iPSC4-hiPSC 菌落。B、用胶原酶 IV 消化 hiPSC 后形成的胚状体 (EB)。C、用 TGF β 抑制剂 SB421543 和 BMP 抑制剂 dorsomorphin 处理的 EB 接种到聚-l-鸟氨酸和层粘连蛋白包被的板上后 7-10 天出现玫瑰花结状结构。D、通过解离玫瑰花结状结构并接种到聚-l-鸟氨酸和层粘连蛋白包被的板上获得神经外胚层细胞。E、F、这些细胞表达 NSC 标记物 Nestin (E) 并在分化第 30 天分化为表达微管相关蛋白 2 (MAP2) 的神经元 (F)。细胞核用 Hoechst 33342 (蓝色) 染色。比例尺:100 µ m。G、H、基于全基因组 SNP 阵列的 hiPSC-NSC 核型分析。针对位于该区域的阵列上所有 SNP,绘制了每条染色体的 B 等位基因频率(上图)和 log 2 R 比率(下图)。每个点都是一个 SNP。虽然第 10 代(p10)的细胞没有显示任何主要核型异常(G),但 p16 的 hiPSC-NSC 表现出 1 号染色体整个长臂的重复,dup(1)q(H)
1 萨萨里大学生物医学科学系, 07100 萨萨里, 意大利; c.locci3@phd.uniss.it (CL); iazzena@uniss.it (IA); oripl@uniss.it (PLF); darsanna@uniss.it (DS) 2 萨萨里大学兽医学系,07100 萨萨里,意大利; marcasu@uniss.it 3 Azienza Ospedaliera Universitaria (AOU) 萨萨里,07100 萨萨里,意大利 4 罗马生物医学大学校园医学统计和分子流行病学部,00128 罗马,意大利; ale_ciccozzi97@icloud.com (AC); m.ciccozzi@unicampus.it(MC) 5 可持续发展和同一个健康科学与技术,罗马生物医学大学,00128 罗马,意大利;giovanetti.marta@gmail.com 6 Rene Rachou,Oswaldo Cruz 基金会,贝洛奥里藏特 30190-009,米纳斯吉拉斯,巴西 7 罗马第一大学生物化学科学系“A. Rossi Fanelli”,00185 罗马,意大利;quaranta.1952503@studenti.uniroma1.it(MQ);stefano.pascarella@uniroma1.it(SP) 8 公共卫生和传染病系,罗马第一大学 Umberto I 综合医院,00161 罗马,意大利; giancarlo.ceccarelli@uniroma1.it 9 Campus Bio-Medico, Fondazione Policlinico Universitario, 00128 Rome, Italy * 通讯作者:fscarpa@uniss.it † 这些作者对这项工作做出了同等贡献。
引用这篇文章:Rahul K. Suryawanshi,Taha Y. Taha,Maria McCavitt-Malvido,Ines Silva,Mir M. Khalid,Abdullah M. Syed,Irene P. Chen,Prachi Saldhi OR-GONZALEZ,威尼斯·塞维利塔,阿米莉亚·格里瓦,珍妮·恩格扬,诺亚·库吉玛,特雷莎·阿雷拉诺,阿利亚·巴斯萨尼奇,维多利亚·赫斯,玛丽亚·赫克斯,玛丽亚·谢克拉,劳伦·洛佩兹NA,Lee Spraggon,Charles Y. Chiu&Melanie Ott(2023)。
亲本组蛋白及其翻译后修饰被保留下来,并随机与新合成的子 DNA 链结合。亲本组蛋白的修饰通过染色质修饰复合物复制到新沉积的组蛋白上:• 一个亚基识别亲本组蛋白上的修饰 • 另一个亚基催化相邻核小体上的相同修饰。请注意,组蛋白在子 DNA 链上的分布是随机的。
正向育种是指在适当的环境中选择具有改良性能的重组体,它一直是作物产量随时间推移不断提高的驱动力。杂种优势的发现(杂种优势是指杂交品种相对于其自交系亲本而言具有改良性能)大大提高了杂交育种早期阶段的产量提高率(Sivasankar 等人,2012 年)。生物和非生物胁迫会降低产量,并造成潜在产量与实际产量之间的差距(Duvick,2005 年)。正向育种对于作物改良必不可少,尤其是对于复杂性状和胁迫环境而言,这是一个资源密集且耗时的过程。即使是由单个基因遗传的简单性状,也需要多次回交 (BC) 才能重建受体亲本的基因组。通过传统方法引入性状的另一个缺点是产量拖累,这个术语用来指供体亲本中不需要的基因导致的粮食产量降低,即使经过多次回交,这些基因仍然存在。由于这些基因之前未经过农艺性能选择,它们往往会降低转化品种的可收获产量。假设不进行选择且不抑制重组,则在 m 次回交后仍会保留下来的供体亲本基因数为 n ∗ d ∗ (1/2) m,其中 d 是供体与优良品系之间差异基因座的比例,n 是作物物种中的基因总数。例如,面包小麦有 ∼ 110 K 基因( Consortium et al., 2018 )。如果野生供体种质与轮回亲本在 30% 的基因座上存在差异,则经过四次回交后,转化品种中将继续存在一千多个来自供体亲本的基因。在差异很大的品系之间的杂交中,有限的重组可能会限制供体亲本的基因组片段被引入轮回亲本基因组的比例,但也可能对减少渗入的供体片段的大小构成挑战,从而增加连锁累赘的可能性(Hao et al., 2020)。标记可以帮助减少(但不能消除)BC1 阶段的供体亲本基因组片段。在资源有限的情况下开展的育种计划将
图 2:与亲本细胞系相比,ATCC CRISPR 编辑的病毒生产细胞系显示病毒基因组拷贝数增加。MDCK.STAT1KO、Vero.STAT1KO 和 293.STAT1 BAX KO 病毒上清液的 TCID ⁵⁰ 染色显示,与各自的亲本细胞系相比,甲型流感病毒产量增加了 2 倍,登革热 II 病毒产量增加了 30 倍,仙台病毒产量增加了 1.8 倍。
图 1 GEaReD 与传统育种方法的应用对比及其省时优势。A) 传统育种方法。高产品种与另一个亲本(通常是具有有趣特征的驯化品种)一起使用。然后将筛选所得植物以获得所需特征,并与高产亲本进行回交,直到所需特征在高性能品种中固定下来。这可能需要几代杂交,并限制亲本材料与品种的可育性。B) GEaReD 作为未来育种的展望。将在高度自动化的环境中筛选野生祖先以获得所需特征。自动筛选设施将与组学设施相结合,并通过 AI 算法分析所得数据以识别有趣的特征。然后,最有希望的候选者将用于基因组编辑,在改变主要驯化基因后,将创建一个具有以前不存在的特性的新品种
图 1 MDA-MB-361 细胞系长期暴露于 T-DM1 会导致对 ADC 的敏感性降低。 (A) T-DM1 对 MDA-MB-361 S、TR 和 TCR 的 MTT 细胞毒性试验表明,与亲本相比,两种抗性细胞的 IC50 值均有所增加。 通过双向方差分析进行统计分析,然后进行 Bonferroni 后检验,并显示 TR (***:P < .001;**:P < .01;*:P < .05) 和 TCR (+) 与 S 相比的差异。 (B) 将亲本和抗性细胞暴露于浓度不断增加的 T-DM1 中,并使用 xCELLigence 跟踪细胞指数。 绘制了由 RTCA 软件确定的标准化细胞指数的斜率。统计分析采用双向方差分析,随后进行 Bonferroni 后检验,并显示每种细胞系在对照和暴露条件下的差异 (*: P < .05; ***: P < .001)。(C) 暴露于 T-DM1 6 天后,通过流式细胞术研究 Annexin 阳性细胞。与亲本细胞相比,TR 和 TCR 中的 Annexin 阳性细胞百分比有所下降。统计分析采用双向方差分析,随后进行 Bonferroni 后检验 (*: P < .05; ***: P < .001)
在许多动物中,生殖系在胚胎发生早期就已分化,因此只有在生殖细胞中积累的突变才会被后代遗传。这一发育过程的例外可能表明已经进化出其他机制来限制有害突变积累的影响。石珊瑚是可以存活数百年的动物,人们一直认为它们从体细胞组织中产生配子。为了澄清关于珊瑚生殖系-体细胞区别的相互矛盾的证据,我们对亲本珊瑚分支及其精子库进行了高覆盖率的全基因组测序和技术重复。我们确定了每个亲本分支独有的胚胎后单核苷酸变异 (SNV),然后检查每个 SNV 是否由各自的精子库共享。26% 的胚胎后 SNV 由精子共享,74% 则不是。我们还确定了生殖系 SNV,即存在于精子中但不存在于亲本中的 SNV。这些数据表明,自我更新的干细胞在群落的成年期会分化为生殖细胞和体细胞,而 SNV 率和模式在干细胞、体细胞和生殖细胞谱系中存在显著差异。除了为后生动物生殖细胞的进化提供信息外,这些见解还揭示了珊瑚如何产生应对全球气候变化所必需的适应性多样性。
