• EZWi-Fit ® 采用 TopI 抑制剂作为负载,内在效力高于 Dxd。该负载不是 ABC 转运蛋白的底物,具有显著的旁观者效应。• 化学修饰的稳定可裂解连接子具有很强的亲水性。通过非 MC 化学结合,连接子-负载的解离大大减少。• 无论靶标和肿瘤类型如何,基于 EZWi-Fit ® 平台衍生的 ADC 均表现出优于 GGFG-Dxd ADC 的体内疗效。ADC 在多种对 MMAE 或 Dxd 有抗性的 CDX 和 PDX 模型中表现出肿瘤抑制或根除活性。即使在靶标表达较低时,ADC 也表现出令人印象深刻的活性。• 由于清除率低,EZWi-Fit ® 衍生的 ADC 具有很好的血清和肿瘤暴露。对多种 EZWi-Fit ® 衍生 ADC 的 NHP 安全性评估显示出很好的耐受性。
n-羧基氢气开环聚合诱导的自组装(NCA ROPISA)为单一步骤产生基于聚(氨基酸)的纳米颗粒的便利途径,至关重要地避免了对聚合后自组装的需求。大多数NCA Ropisa的例子都利用了聚(乙二醇)(PEG)亲水性稳定块,但是这种不可生物降解的油源性聚合物可能会在某些个体中引起免疫反应。因此,高度寻求替代水溶性聚合物。这项工作报告了通过与L-苯基丙氨酸-NCA(L-PHE-NCA)和Alanine-NCA(ALA-NCA)(通过含有的NCA Ropisa)的链链延伸的链链延伸,该纳米颗粒的合成。所得的聚合结构主要由各向异性,棒状纳米颗粒组成,形态学主要受疏水聚(氨基酸)的二级结构的影响,从而实现其形成。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
在亲水性聚合物基质中配制低水溶性小分子药物,也称为无定形固体分散体 (ASD),是实现有效药物输送和生物利用度的最常见方法之一。生产高性能 ASD 取决于各种因素,例如药物赋形剂基质的物理稳定性、其在溶解过程中与聚合物的相互作用以及药物在水性介质中的释放速率。通常,研究人员会进行大量的设计和实验迭代来实现这一目标。虽然可以从实验数据中得出关于药物释放行为的假设,但对基本机制的全面理解和对分子水平事件的洞察仍然难以实现。仅通过实验很难获得详细的药物/聚合物/水相互作用。因此,需要一种更有效的方法来指导为特定药物选择合适的赋形剂(包括聚合物)。
与基于合成的不可降解纤维相比,菠萝叶纤维(PALF)的聚合物复合材料的抽象开发引起了人们的兴趣。然而,亲水性PALF与疏水性的热固体和热塑性聚合物的界面粘合不良。此外,PLAF的这种亲水性质会导致更多的水分吸收率,从而导致整体性质降解。可以通过修改纤维表面来解决此问题。因此,对纤维表面修饰对各种特性的影响以及与聚合物的粘附的影响是改善PALF及其复合材料关键词的关键:菠萝叶纤维纤维土壤覆盖物 - 菠萝叶子机制的组成部分绷带 - 适应性和bordage todive toperage toseal to norder seaste kite intery seaste sisea intery sisea intery sisea interae sisea interae sisea interae sisea interaipe nestea intery sisea interaipe nestea intery sisea interaipe nestea是一个巨大的销售。菠萝叶纤维的提取正在为商业和小型生产商开辟一个市场。正在研究许多其他可能性,例如可能来自菠萝的不同纤维。[1]菠萝是一种未鉴定的果实,是热带地区原生的。可用于市场机会的新兴行业是有价值的饮食纤维。水果的纤维是多种食物的有益补充。可见在其他区域中使用的水果的微晶纤维素。泰国,菲律宾,哥斯达黎加,中国和印度是世界上增长最快的国家,以及巴西[2]。*信函的作者纤维繁荣,除了其在东北和阿萨姆地区的强大基础。可用于生产力量表的菠萝农作物种植的最大区域是阿萨姆邦。印度在这种作物的产量中领先世界,这为纤维生产带来了更多的机会。近90-95%的产品是有机的,该地区产生了全国菠萝的40%以上[3]。创建纤维和纺织品,重点是绿色环境,这是消费和生活水平的增加。从利用叶子和茎的创意项目中获得知识,最近引发了对可持续发展的关注
摘要 囊泡是脂质体的特征替代品,被称为非离子表面活性剂囊泡。它们在结构上类似于脂质体,可生物降解、相对无毒、生物相容性好、更稳定、价格低廉,并且在结构表征上也表现出灵活性。囊泡可以在其多环境结构中封装不同类型的药物,即亲水性药物和亲脂性药物。囊泡是一种由非离子表面活性剂组装的双层结构的囊泡系统,能够在一段时间内提高药物在预定区域的生物利用度。由于囊泡的两亲性质,包封效率得到提高,并且可以使用胆固醇等其他添加剂来维持囊泡结构的刚性。囊泡在诊断成像和作为疫苗佐剂方面也是首选。由于是非离子型的,它们还通过将药物的作用限制在靶细胞上来提高药物的治疗指数。本叙述性综述重点介绍了囊泡的基本方面,包括其结构、制备方法、优点、缺点和应用。关键词:囊泡、胆固醇、亲水性和亲脂性药物、表面活性剂、NSV。收到日期 2020 年 12 月 3 日修订日期 2021 年 1 月 10 日接受日期 2021 年 1 月 14 日简介:囊泡是基于表面活性剂的囊泡,由包裹亲脂性成分的单层/多层结构组成,适当的溶质溶液称为囊泡。这些是通过水合表面活性剂单体自组装产生的非离子表面活性剂囊泡 [1]。这些是由非离子表面活性剂、胆固醇和乙醚混合,然后在水介质中水化形成的囊泡结构,包含尺寸范围在 10 到 1000nm 之间的层状结构。囊泡相对于脂质体的各种优势在于稳定性相关问题,包括氧化、高经济性、影响尺寸和形状的纯度,因为它由非免疫原性、可生物降解和生物相容性的表面活性剂组成 [2]。非离子表面活性剂(如 span-60)通常可以通过添加少量阴离子表面活性剂(如二乙酰磷酸酯)来稳定。囊泡优于脂质体的主要原因是其化学稳定性高且经济性好。这些非离子表面活性剂具有多种优势,并且
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
摘要:二氧化钛纳米管阵列 (TNA) 纳米系统在药物输送应用中得到了广泛的讨论,它可为靶向癌症治疗中化疗药物的持续释放提供优势。本研究分析了顺铂化疗药物 (CDDP) 在 TNA (CDDP-TNA) 上的包封效率。本研究中使用的锐钛矿 TNA 纳米系统具有 25 θ 和 48 θ 的衍射角。使用主要功能标记酰胺 I 带 (N-H) 确定了 CDDP 在 TNA 上的分布和结合相互作用,并进一步捕获了 CDDP 从 TNA 中的缓释曲线。此外,CDDP-TNA 纳米系统具有良好的亲水性,可以促进 CDDP 从 TNA 纳米系统中有效释放。然而,需要使用聚合物涂层技术开发 CDDP-TNA 纳米系统的控释模型来支持目前的发现,特别是在靶向癌症治疗应用中。
抗菌作用。13–15例如,亲水性BP纳米片可以有效附着在细菌上,促进细菌光热灭活。16鉴于2D-BP在未来的应用潜力,了解其对健康和生态的影响至关重要。然而,人们对细菌反复暴露于2D-BP是否会产生抗性以及相应的影响机制知之甚少。本研究使用野生型大肠杆菌,通过17个培养周期,研究细菌在反复暴露于2D-BP悬浮液(从亚最低抑菌浓度(亚MIC)到MIC)后的变化。主要目的是评估反复暴露于亚MIC BP悬浮液的细菌的抗性表型变化,并进一步研究导致细菌对2D-BP产生抗性的生理和遗传变化。最后,更好地了解2D-BP暴露的生物学效应,以指导和规范其应用和环境释放限制。