水-能源可持续性将取决于先进压力驱动分离膜的快速发展。尽管节能,但水处理膜受到普遍存在的污垢的限制,这可以通过设计自清洁膜界面来缓解。在本研究中,设计了一种金属-多酚网络来引导催化纳米膜(约18 纳米)在惰性聚合物膜上的装甲化。螯合导向的矿化涂层表现出高极性、超亲水性和对原油的超低粘附性,可实现可循环的原油-水乳液分离。现场通量恢复率超过 99.9%,减轻了传统外部清洗的需要。与对照膜和简单液压清洗相比,螯合导向纳米装甲膜的就地自清洁再生性能分别提高了 48 倍和 6.8 倍。通过密度泛函理论计算确定了前体相互作用机制。螯合导向装甲化为催化、生物医学、环境修复等领域的可持续应用提供了希望。
靶向药物输送系统的创建是纳米技术最新进展的结果。然而,使用药物输送系统有效地将分子靶向到特定位置需要专门的药物输送系统。由于纳米海绵可以容纳亲水性和疏水性药物,因此纳米海绵的开发已被证明是克服药物毒性、生物利用度低和药物释放可预测等问题的关键一步。纳米海绵的多孔形状使其具有独特的能力,可以捕获药物分子,同时提供释放药物的好处。纳米海绵是一种微小的海绵,可以在体内移动,与药物表面结合,并以受控和可预测的方式释放药物。通过将环糊精与羰基或二羧酸盐交联,可以创建纳米海绵(交联剂)。为了输送口服、外用和肠外给药的药物,纳米海绵技术得到了广泛的研究。疫苗、抗体、蛋白质和酶都可以通过纳米海绵有效地运输。本文重点介绍了制备过程、特性及其在药物输送系统中的可能应用。
在这项研究中,确定了纤维素和硝酸纤维素样品的标准形成焓和熵。这些特征用于热力学分析整个纤维素样品和局部硝化的大量硝化,仅对纤维素的无定形结构域(AD)。发现,纤维素的大量硝化作用至1.5的替代程度(DS)是吸热性的,主要取决于温度 - 熵成分对负Gibbs电位的贡献。但是,如果DS高于1.5,则大量硝化变为放热,其可行性取决于焓对Gibbs电位的影响。在纤维素AD的局部硝化的情况下,对Gibbs电位的主要贡献是由反应焓决定了该过程的可行性。表明,随着硝酸纤维素ds的增强,反应的吉布斯电位的负值增加。因此,对较高DS的纤维素硝化在热力学上是有利的。由于局部硝化样品是无定形硝酸纤维素和结晶纤维素的共聚物,因此它们的亲水性应比纤维素明显小。因此,可以预期,局部硝化方法将为纤维素材料的廉价疏水方法找到广泛的实际应用。
Terahertz(THZ)技术提供了从卫星和望远镜的校准目标到通信设备和生物医学成像系统的机会。一个主组件将是具有切换性的宽带THZ吸收器。然而,稀缺的具有光学切换的材料,它们的调制大多在狭窄的带宽下可用。在吸收或传播中实现具有大型和宽带调制的材料构成了关键的挑战。这项研究表明,进行聚合物 - 纤维素气凝胶可以提供宽带THZ光的调制,其调制范围很大,概率为≈13%至91%,同时保持镜面反射损失<-30 dB。特殊的THZ调制与导电聚合物的异常光学电导率峰有关,从而增强其氧化态的吸收。这项研究还证明了通过简单的化学修饰降低表面亲水性的可能性,并表明在光学频率下宽带吸收气凝剂可以通过太阳能诱导的加热来降低质量。这些低成本,水溶液可加工,可持续和生物友好的气凝胶可能会在下一代智能THZ设备中使用。
ashwinishinde2408@gmail.com摘要:niosome是在合成非离子表面活性剂水合下获得的非离子表面活性剂囊泡,没有或不掺入胆固醇或脂质。它们是类似于脂质体类似的囊泡系统,可以用作两亲和亲脂性药物的载体。niosome似乎是一种优先的药物输送系统,而不是脂质体,因为Niosome稳定且经济。还具有较大的药物输送潜力,可靶向抗癌,抗感染剂。niosomes可能会诱发亲水性和亲脂性药物,并可以延长夹杂药在体内的循环。可以预测,可以预测药物在囊泡系统中的封装可以延长全身循环中的药物存在,并增强渗透到靶组织中,如果可以实现选择性摄取,则可能会降低毒性。本综述文章重点介绍了噪声组的优点,缺点,准备方法,影响因素,影响力,作用机理和应用。关键字:niosomes,胆固醇,非离子表面活性剂,两亲量,药物载体,类型,制备方法,表征,优势,应用
将石墨烯集成到电子、光子或传感设备中的限制因素之一是无法在隔离器上直接生长大规模石墨烯。因此,需要将石墨烯从供体生长晶片转移到隔离目标晶片上。在本研究中,通过电化学分层程序将石墨烯从化学气相沉积的 200 毫米锗/硅 (Ge/Si) 晶片转移到隔离 (SiO 2 /Si 和 Si 3 N 4 /Si) 晶片上,使用聚甲基丙烯酸甲酯作为中间支撑层。为了影响石墨烯的粘附性能,本研究调查了目标基板的润湿性。为了增加石墨烯在隔离表面上的粘附性,在石墨烯转移过程之前用氧等离子体对它们进行预处理。润湿接触角测量表明,表面与氧等离子体相互作用后亲水性增加,从而提高了石墨烯在 200 毫米目标晶圆上的附着力,并可能在标准 Si 技术中对基于石墨烯的器件进行概念验证开发。
简单摘要:针对成纤维细胞激活蛋白α(FAP)的放射性药物可用于许多不同的癌症类型,因为FAP在几乎所有上皮癌症的肿瘤微环境中都高度表达。单体放射性示例在分子成像(诊断)中表现出巨大的潜力,但肿瘤保留时间相对较短(几个小时)。对于有效的放射性治疗(RLT),放射性示踪剂的生物半衰期应理想地与重要的治疗放射性核素177 LU和225 AC(6.7和9.9天)相匹配。使用FAPI同二聚体Dotaga改善了肿瘤的保留率。(sa.fapi)2。在优化方面,新的FAPI同型二聚体do3a.glu。(fapi)2和dotaga.glu。(FAPI)2。合成。dot- aga.glu。(FAPI)2与Dotaga相比,体外亲和力和选择性表现出优质的放射性标记特性(包括成功的225个AC标记,较高的亲水性和选择性)。(sa.fapi)2。与[177 lu] lu -dot -aga相比,临界器官(肝脏,结肠)的摄取显着降低。(sa.fapi)2。(FAPI)2在第一次患者研究(甲状腺钝性癌)中,同时保持肿瘤摄入较高和长时间。
摘要:木质纤维素天然纤维具有亲水性,而许多复合材料的基质系统具有疏水性。天然纤维增强聚合物 (NFRP) 基质复合材料要获得良好的机械性能,依赖于界面处良好的纤维-基质结合。增强材料通常涂有两亲偶联剂以促进形成坚固的界面。一种新颖的替代方法是在与基础环氧树脂形成化学计量混合物之前,将偶联剂溶解在树脂硬化剂中。在复合材料制造过程中,偶联剂的亲水 (极性) 端迁移到表面 (内部界面) 并与纤维结合。偶联剂的疏水 (非极性) 端仍嵌入混合树脂中。复合材料样品的机械测试表明,直接添加到基质中的硅烷可产生具有增强纵向性能的 NFRP 复合材料。由于不再需要预处理纤维涂层,新技术具有经济(缩短了处理时间)、环境(消除了受污染的溶剂)和社会(减少工人接触化学蒸汽)等好处。关键词:偶联剂;环氧树脂;硬化剂;界面;天然纤维 1. 介绍
nbslcnls 基于 MXene 的传感材料:现状和未来前景 Vishnu Sankar Sivasankarapillai, 1 Tata Sanjay Kanna Sharma, 2, 3 Kuo-Yuan Hwa 2, 3 Saikh Mohammad Wabaidur, 4 Subramania Angaiah 5 和 Ragupathy Dhanusuraman 1,* 摘要 MXenes 是一类二维多功能材料,自 2011 年被发现以来一直处于快速发展阶段。MXenes 具有高导电性和表面积、改进的机械性能、亲水性以及通过修改功能团来调整表面性能的能力等优异特性。这些特性使 MXenes 成为广泛应用的合适候选者,包括生物医学和储能。本综述重点介绍了最近报道的用于传感器应用的各种类型的 MXenes。首先介绍了 MXenes 的制造和特性的现状,然后讨论了它们作为压阻和生化传感器的应用。这涉及机械应变检测以及与生物医学应用相关的生物分子、生物标志物和药物分子的检测。最后,简要讨论了未来的前景,这将有助于研究人员确定当前情况的局限性并制定新的战略,重点是开发基于 MXene 的新型、高效和灵敏的传感器。
靶向药物输送,有时也称为智能药物输送,是一种通过增加活性分子的浓度将活性分子输送到目标部位并在不干扰生物环境的情况下产生所需效果的方法。该系统基于一种技术,该技术可在长时间内将精确量的活性成分输送到体内的目标患病区域。这有助于在体内维持指定的血浆和组织药物水平,从而防止药物对健康组织造成任何伤害。它在减少给药频率、使药物效果更均匀、减少副作用和减少循环药物水平波动方面具有优势。在几种囊泡药物输送系统中,脂质体比其他系统更受关注,因为它具有多种优点,如优异的化学和生物稳定性、良好的溶解能力、促进生物活性分子的细胞内输送、减少巨噬细胞的摄取以及将每种亲水性和亲脂性药物分子封装在一起。本综述的重点是讨论脂质体,特别强调药物的靶向性。