自然界中充满了以纤维和生物复合材料形式存在的结构材料,它们经过亿万年的进化选择,已经达到了惊人的效率和性能水平 (O'Brien 等人,1998)。尽管这些天然聚合物在某些情况下由于其成本、功能和消费者偏好而具有商业重要性,但与质量变化相关的缺点以及它们亲水性和低热稳定性已导致它们被具有更理想性能的合成聚合物所取代 (Kalia 等人,2009)。随着 20 世纪初有机化学和石油基化学的出现,天然聚合物越来越多地被合成聚合物和纤维开发所取代,多年前,合成聚合物和纤维开发产生了一系列新产品,如尼龙、聚酯、丙烯酸、芳纶、斯潘德克斯、烯烃树脂和纤维,具有优异的拉伸强度和应力-应变行为 (O'Brien 等人,1998)。一种新型的“工程化”肽基生物聚合物引起了广泛关注,它由源自两项科学发展的材料组成:对蛋白质结构功能的日益了解,提供了可用于设计重复的肽基序,
粘附药物输送系统(MDDS)代表了一种通过口服途径(例如颊,舌下和牙龈区)管理药物的创新方法。这些系统利用天然或合成聚合物确保对粘膜表面的长时间粘附,从而可以扩展和受控的药物释放。几个因素影响粘附的有效性,包括聚合物的亲水性,分子量和pH和水分水平等环境因素。mdds可以采取各种形式,包括片剂,膜,斑块,烤肉和凝胶,每种都提供不同的药物释放曲线,例如立即,持续或控制。这些系统通过避免首次代谢来增强药物生物利用度,使其对低口服生物利用度或需要靶向递送的药物特别有益。尽管MDD提供了改善的患者合规性和治疗效果,但它们仍然面临诸如刺激,口味关注和唾液稀释作用之类的挑战,这可能会影响药物稳定性。尽管面临这些挑战,但MDD仍具有在各种医疗应用中推进药物输送技术的巨大希望。本综述彻底研究了粘附药物输送系统的机制,优势,局限性和未来前景。
摘要:废水中的新兴污染物对人类健康和野生动植物构成了重大风险,尤其是由于它们在WWTPS的经过处理的废水中的持续存在。最新的研究集中在使用无机和有机光催化剂基于高级氧化过程开发新技术,以在可见光下处理污染的废水。这项研究研究了使用异质光活性聚合物材料P2,P3和P4的农药驱动系统。这些材料以亲水性聚合物微粒的形式设计,并用玫瑰孟加拉官能化,在AHMPD降解(一种杀虫剂杀虫剂)中,已表现出有效的单线产生和一阶动力学。鉴于文献中的大多数研究都集中在城市WWTP上,而对工业废水处理的重视程度较低,因此该研究集中在农业食品领域的工业WWTP的废水中,该研究的过程是柑橘大量的柑橘和AHMPD高浓度和其他PESTERIDES的浓度。评估光活性材料P3和P4的降解潜力,在pH = 11的条件下,AHMPD的去除率高达85%,暴露于可见光的48小时后。
根据谁的说法,癌症是全球死亡的第二大原因[1]。虽然有些癌症是可以治疗的,并且如果在早期发现的情况下被认为危及生命较小,但其他癌症的预后可能较差,死亡率较高。例如,由于药物反应不足,原发性和转移性脑肿瘤通常很难治疗。此外,在症状出现之前,脑肿瘤还具有挑战性。因此,诊断通常只能在以后进行,使脑肿瘤更难治疗[2]。例如,胶质母细胞瘤多形是最常见的脑癌形式之一(WHO IV级),其侵略性转移性特征导致预后较差和生存率[3,4]。诊断后仅12-15个月的中位生存时间,<10%的5年总生存期[5]。一般治疗方案包括手术,放射疗法和化学疗法。尽管联合疗法的最新进展有望获得卓越的治疗成功,但生存率仍然不令人满意[2,6]。脑癌治疗中最大的障碍之一是通过血脑屏障(BBB)。BBB自然可以保护大脑作为物理屏障的外来物质,并通过调节分子向大脑的运输来提供脑抑制症[7]。形成BBB的内皮细胞具有非常紧密的连接和弹性,阻碍了亲水性药物的通过和> 95%的疏水药物的通过[8]。一些小药物,例如具有疏水特性的替莫唑胺,可以通过被动扩散通过BBB运输;但是,具有极性,带电或亲水性特征的较大分子需要使用专用运输蛋白来依靠主动传输途径[9]。由于无法将化学治疗药物有效地运送到大脑,脑肿瘤治疗的负担主要遇到。因此,有必要开发更多有效的药物分娩系统,以帮助抗癌药以临床上足够的数量到达大脑。在过去的二十年中,已经出现了许多不同的技术,可以提供更好的药物运输到大脑[10],应用药物修饰,将药物植入脑外科手术[11],暂时破坏BBB超声或渗透差异或渗透差异[12],以及使用纳米型药物来帮助使用纳米型[9]。然而,修改药物的分子结构可能导致药物效率的降低,植入药物需要脑部手术,并且有使用Ultrasound永久损害BBB完整性的风险[13]。另一方面,精心设计的纳米型药物输送可能会以所需的剂量有选择地将抗癌剂传递到目标部位,并为脑癌提供或提供更安全的治疗方法和诊断手段[9,14]。
靶向药物输送可改善细胞对药物的吸收并降低毒性,近年来取得了进展。近 60 年来,脂质体一直被研究用作纳米载体,将药物靶向到其作用位点 [1]。由于脂质体具有与细胞磷脂结构相似的独特结构,并且脂质体可以配制成不同的形式,因此它们被用作药物输送系统。亲水性和疏水性药物都可以封装在脂质体的核心内,用于输送各种药物,例如用于治疗结核病和肝炎的抗癌药物和抗感染药物 [1-3]。此外,大的水性中心和生物相容性的脂质外部允许输送大分子,例如 DNA、蛋白质和成像剂。脂质体通过稳定治疗化合物、克服细胞和组织吸收障碍以及改善化合物在体内靶点的生物分布,改善了一系列生物医学应用的治疗方法。作为一种药物输送系统,脂质体具有多种优势,包括生物相容性、容量和生物物理特性,可以对其进行修改以控制其生物学特性。脂质体制剂的特点是粒径、
二甲双胍是2型糖尿病患者(T2D)的最常见的药物。全球有超过1.2亿T2D患者使用二甲双胍。然而,单药治疗无法在三分之一的接受治疗的患者中获得血糖控制。遗传学有助于血糖对二甲双胍的血糖反应的一些个体间变化。许多药物遗传学研究表明,二甲双胍编码转运蛋白的药代动力学和药效学有关的基因的变化主要与二甲双胍反应有关。本综述的目的是评估二甲双胍药物遗传学和代谢组学研究的当前状态,讨论需要解决的临床和科学问题,以提高我们对患者对二甲双胍的反应变异性的了解以及如何改善患者的结果。二甲双胍的亲水性和吸收及其对T2D启动的作用机制和有效性。分析与各种基因相关的变异的影响,以识别和评估遗传多态性对二甲双胍治疗活性的影响。也指示T2D和二甲双胍的代谢模式。这是为了强调,对药物遗传学和代谢组学的研究可以扩展我们对T2D中二甲双胍反应的了解。
核黄素-5-磷酸 (RF) 是角膜交联 (CXL) 中最常用的光敏剂,但其亲水性和负电荷限制了其穿透角膜上皮进入基质。为了增强 RF 对角膜的通透性并提高其在圆锥角膜治疗中的疗效,以 ZIF-8 纳米材料为载体制备了新型芙蓉状 RF@ZIF-8 微球复合材料 [6RF@ZIF-8 NF (纳米片)],其特点是疏水性、正电位、生物相容性、高负载能力和大表面积。苏木精和伊红内皮染色和 TUNEL 分析均证明 6RF@ZIF-8 NF 具有良好的生物相容性。在体内研究中,6RF@ZIF-8 NF 表现出优异的角膜渗透性和出色的跨上皮 CXL (TE-CXL) 功效,略优于传统 CXL 方案。此外,6RF@ZIF-8 NF 的特殊芙蓉状结构意味着它比 6RF@ZIF-8 NP(纳米颗粒)具有更好的 TE-CXL 功效,因为与上皮的接触面积更大,RF 释放通道更短。这些结果表明 6RF@ZIF-8 NF 有望用于跨上皮角膜交联,避免上皮清创的需要。
摘要 脂质体药物输送系统是革新制药行业最有前途的创新之一。它将具有亲水性和疏水性的药物整合到生物相容性的脂质双层中。在这篇综述中,我们将讨论脂质体的一般特性,包括组成和与增加药物溶解度、稳定性和靶向输送有关的机制。它提到脂质体制剂的开发和重要里程碑,例如 FDA 批准 Doxil,是脂质体临床应用的转折点。它已用于肿瘤治疗领域,其中全身毒性同时降低,同时使治疗更有效。本文还强调了脂质体系统、缓释特性和联合疗法的优势,这些优势有助于解决耐药性问题。进一步回顾了脂质体的当前临床应用,以展示确实影响患者治疗的成功产品。脂质体技术与新型治疗策略的结合具有良好的前景,从这个方向可以考虑更有效治疗和个性化治疗的要求。本综述重点介绍了脂质体药物输送系统在现代医学中的关键作用,强调了它们彻底改变治疗方法和患者治疗效果的潜力。
生活存在于界面。生物细胞的关键特征之一是隔室化,这是由脂质促进的,该脂质促进了水的不可渗透障碍,以控制材料在跨亲水性疏水界面的运输。微生物系统利用脂质以外的大量表面活性剂来适应环境细分市场,修改界面的特性,促进营养物质的代谢和抗菌药物的溶解。因此,它们是一类引人入胜的生物分子类,可以从应用或利基环境中的有效性如何取决于序列,结构和化学性质。此外,人们对基于石化的表面活性剂的负面健康和环境影响越来越多,例如对植物和水生寿命的土壤侵蚀和毒性,以及与石化化学表面活性剂制造相关的碳足迹和相关的温室气体排放。在这篇综述中,我们讨论了生物表面活性剂和应用的特性,并突出了文献中描述的基于独特潜力和应用的生物性生物表面活性剂的示例。随着社会向循环生物经济的过渡,我们对合成生物学开发新材料(例如生物表面活性剂)的潜力感到兴奋,以促进这种重要的过渡。
软致动器 (SA) 是一种可以与精密物体进行交互的设备,而传统机器人无法实现这种交互方式。虽然可以设计一种通过外部刺激触发驱动的 SA,但使用单一刺激会对驱动的空间和时间控制带来挑战。本文介绍了一种 4D 打印多材料软致动器设计 (MMSA),其驱动仅由触发器组合(即 pH 和温度)启动。使用 3D 打印,设计了一种多层软致动器,该致动器具有亲水性 pH 敏感层和疏水性磁性和温度响应形状记忆聚合物层。水凝胶通过膨胀或收缩来响应环境 pH 条件,而形状记忆聚合物可以抵抗水凝胶的形状变形,直到被温度或光触发。这些刺激响应层的组合允许对驱动进行高水平的时空控制。通过一系列货物捕获和释放实验,证明了 4D MMSA 的实用性,验证了其展示主动时空控制的能力。MMSA 概念为开发多功能软设备提供了一个有前途的研究方向,这些设备在生物医学工程和环境工程中具有潜在的应用前景。