“纳米技术”是指能够制造尺寸在“纳米”范围内的物体的技术领域。纳米粒子是纳米技术的核心组成部分。纳米材料的发展,特别是无机纳米粒子 (NP) 和纳米棒,具有独特的用途和与块体材料截然不同的尺寸相关物理化学性质,导致了纳米技术产业的爆炸式增长。特别是,AgNP 对纳米医学和纳米科学和纳米技术领域的其他领域至关重要。物理、化学或生物机制都可用于生产 AgNP。除了用作生物传感器、疫苗佐剂、抗糖尿病药物以及促进骨骼和伤口愈合外,AgNP 主要用于抗菌和抗癌治疗。纳米粒子是一种用于疾病治疗中微分子和大分子靶向和可控递送的有利递送系统,因为亲水性和疏水性物质都易于结合,与配体形成稳定的相互作用,尺寸和形状多样,载体容量高,与配体相互作用稳定。当治疗剂和纳米粒子一起使用时,传统疗法的问题就被克服了。目前,许多科学家和研究人员正致力于研究银纳米粒子在精神疾病、关节炎、高血压和多囊卵巢综合征 (PCOD) 治疗中的应用。
氧化石墨烯(GO)在水纯化领域中具有巨大的潜力。但是,当直接应用于实际废水废水时,纯GO膜遭受诸如污染灵敏度和有限稳定性等缺点。为了应对这些挑战并解锁GO膜的全部潜力,通过与ZIF-8的纳米颗粒的插入(一种沸石咪二唑酯框架)的插入,已经开发出了新型的纳米复合膜。制备的GO/ZIF-8(GZ)纳米复合膜表现出增强的亲水性和特殊的水纯化能力。具体来说,与原始的GO参考Mem Brane相比,GZ膜表现出了超过两倍的渗透性增强。这种增强效果与盐和有机污染物的抗死性能和竞争性排斥率相结合。gz膜通过3种工业废水废水的跨流过滤有效地用于纯化。与原始的GO参考膜相比,它们显示出改善的分离性能,并且在跨流条件下的高稳定性。使用结构和形态学分析阐明了GZ膜高性能的起源。这项工作强调了使用基于石墨烯的膜在水处理领域取得的重大进展。
活检是肿瘤诊断的黄金标准,因为该技术提供了有关肿瘤发生和进展的高度详细且可靠的信息。类似于沙漠甲虫的离散性润湿性,在这项研究中,开发了荧光聚合酶链反应(F-PCR)微针阵列(MNA)平台,用于有效的空间肿瘤活检。通过自下而上的自组装和自上而下的Photolithog-raphy的耦合策略来制造此MNA。它包括疏水二氧化硅组装的底物和石墨烯气凝剂 - 凝胶凝胶混合微针峰。从其石墨烯混合微尼峰的亲水性和吸收能力中造成的好处,MNA可以轻松地穿透组织样品并立体地收集肿瘤酸性生物标志物。此外,由于平台的离散性,组织流体和PCR液体都可以轻松从底物中去除,并且每个微针峰都与直接导致F-PCR反应进行肿瘤标记物发现的F-PCR反应相似。基于这些优势,F-PCR-MNA平台被揭示为在Standard溶液,小鼠组织样品和临床标本中检测肺癌的DNA生物标志物的理想选择,从而将其实际潜力作为创新的肿瘤生物瘤系统。
由于其廉价的生产,高电导率,掺杂的简单性以及增强的亲水性特性,多孔碳泡沫具有很大的潜力用于储能和转换应用。在这项研究中,氧化石墨烯(GO)被成功地嫁接到碳泡沫上,并在接头的帮助下使用简单的浸入涂层技术。3D多孔碳泡沫是使用商业三聚氰胺泡沫的一步碳化产生的。使用XRD,FTIR,BET,TGA,XPS,RAMAN和FESEM来表征该材料,以确认其结构,功能组,表面积,热稳定性和形态特征。样品的应力应变测试是在电子通用测试机上进行的。这些泡沫具有足够的表面积(99 m 2 /g),高水平的C含量(79.15%)和出色的可压缩性。此外,作为针对不同应用的建议材料,这种独特的GO移植多孔碳泡沫也倾向于在不同的研究领域提供出色的性能。总而言之,由于直接的准备过程和引人入胜的特性,GO移植的多孔碳泡沫在不同应用方面具有出色的前景。关键字:储能;氧化石墨烯;三聚氰胺泡沫;多孔碳泡沫
脑肿瘤是未满足医疗需求中最具挑战性和最困难的领域之一。肿瘤靶向和脑部药物输送系统可增加药物在肿瘤区域的积累,同时降低正常脑和外周组织中的毒性,是一种很有前途的脑肿瘤治疗方法。当脑肿瘤表现出相对于外周组织中生长的肿瘤的许多显着特征时,可以利用基于不断变化的血管特征和微环境的潜在靶点来促进有效的脑肿瘤靶向药物输送。在本综述中,我们简要描述了脑肿瘤的生理特征,包括血脑屏障/脑肿瘤屏障、肿瘤微环境和肿瘤干细胞。我们还在综述中讨论了靶向输送策略,并介绍了一种系统的靶向药物输送策略来克服这些挑战。在血脑屏障存在的情况下,药物向中枢神经系统输送的一个令人不安的事实是,血脑屏障往往会损害药物分布,并表明中枢神经系统药物开发的一般障碍。神经肽和许多其他亲水性药物在通过血脑屏障时可能会涉及复杂性。输送药物的净量及其进入相关靶位的能力是 CNS 药物开发的主要考虑点。在本综述中,我们将讨论针对大脑部位的方法。
牧豆胶 (PRG) 是一种亲水性聚合物,可从非洲牧豆种子中获得。本研究调查了该胶在十二指肠靶向输送奥美拉唑中的应用。使用 5% 至 30% 的各种浓度的 PRG 通过湿法制粒配制奥美拉唑颗粒,并测定颗粒的流动特性。然后将颗粒压制成片剂。获得了片剂在 pH 1.2 溶解介质中以及 pH 5.5 下的释放曲线。将这些配方与含有 15% 羟丙基甲基纤维素的片剂进行了比较。发现颗粒的 Hausner 比率范围为 1.05 至 1.17,Carr 指数范围为 5.0% 至 14.0%。测试片剂的抗压强度范围为 6.2 至 6.9 kgf。含有 5%、10% 和 15% PRG 的配方在胃 pH 下表现出大量药物释放,因此只有极少量的药物到达目标部位(十二指肠),而含有 20% 和 30% 胶的配方在相当于十二指肠部位的 pH 下分别能够输送 76% 和 82% 的药物。这项研究表明,浓度为 20-30% 的 PRG(从非洲楝种子中提取)适用于奥美拉唑片剂的配方,从而提供一种靶向十二指肠输送药物的方法。
lisinopril片剂中含有lisinopril二水合物,它是一种血管紧张素转换酶(ACE)抑制剂,可广泛用于心脏病和高血压的治疗。赖诺普利与临时血液转移酶增加的风险较低有关,并且与罕见的严重甚至致命的急性肝损害的病例有关。此外,正在研究它,以预防和管理几种抗癌药物带来的副作用。它抑制了拧紧血动动脉的特定酶(狭窄)。在没有对使用数字和利尿剂的标准疗法反应的充血性心力衰竭的个体中,丽索普利增强了心输出量,同时降低了肺毛细管楔形压力和平均动脉压。1 lisinopril以平板电脑形式提供,只有医生的处方才能使用。lisinopril与卡托普利(Capteropril)和依那普利(Enalapril)有所不同,因为它是亲水性的,不会因肝脏而分解,并且具有很长的半寿命。此外,马来西亚市场上还有许多不同的品牌和通用产品。血压,心率,血液尿素氮(BUN),全血细胞计数(CBC),血清钾和肌酐水平是在给药后要监测的重要参数。1林索普利的化学结构在图1中放置
摘要:越来越多的研究集中在有机流动电池(OFB)上,作为钒流电池(VFB)的可能替代品,具有蒽醌衍生物,例如蒽醌-2,7-二硫酸(2,7-AQDS)。VFB已被认为是一种有前途的储能技术。然而,钒矿物质和危险供应链的波动妨碍了它们的实施,而可以通过可再生原材料制备OFBS。流量电池的关键组成部分是电极材料,它可以确定功率密度和能量效率。,与VFB相比,针对OFBS量身定制的电极的研究很少。因此,在这项工作中,我们提出了对2,7-AQDS氧化还原夫妇的氧化石墨烯(RGO)和聚乙二醇降低的商业碳毡的修饰,并初步评估其对2,7-AQDS/非铁素流量电池的影响。的结果与VFB的结果进行比较,以评估修改的益处是否可以转移到OFBS。通过RGO的存在引入表面氧的碳毡的修饰增强了其亲水性和表面积,有利于对VFB和OFB反应的催化活性。鉴于改良电极的行为改善,结果是有希望的。的相似之处。关键字:2,7-AQD,电催化,储能,六酰甲型甲酸,修饰的毛毡,有机流量电池,氧化还原流量电池
摘要:在二十一世纪,工程纳米材料(ENM)吸引了兴趣的不断增长,在全球范围内彻底改变了所有工业部门。不断扩大的世界人口和新的全球政策的实施越来越多地推动社会迈向生物经济,重点是促进采用基于生物的纳米材料,这些纳米材料功能性,具有成本效益,并且潜在地暗示在不同领域,包括医疗领域,包括医疗领域。这项研究集中于基于生物的和合成起源的二氧化硅纳米颗粒(SIO 2 -NPS)。SiO 2 -NP由二氧化硅组成,二氧化硅是地球上最丰富的化合物。由于其特征和生物相容性,它们在许多应用中广泛使用,包括食品工业,合成过程,医学诊断和药物输送。使用斑马鱼胚作为体内模型,我们评估了与商用的亲水性粉丝NPS(SIO 2 -AerosiL200)相比,稻壳(Sio 2 -RHSK NPS)的无定形二氧化硅NP的影响。我们评估了在组织化学和分子水平上胚胎暴露于两种纳米颗粒(NP)的结果,以评估其安全性,包括发育毒性,神经毒性和促炎潜能。结果显示了两种二氧化硅NP之间的差异,这表明基于生物的SIO 2 -RHSK NP不会显着影响中性粒细胞,巨噬细胞或其他先天免疫系统细胞。
胶质母细胞瘤多形(GBM)是最具侵略性和致命的中枢神经系统相关肿瘤,该肿瘤约有4%的癌症相关死亡。当前的GBM治疗包括手术,放射线和化学疗法。GBM的有效化学疗法受到两个障碍的损害。 e。,血脑验室(BBB)和血肿瘤屏障(BTB)。因此,需要新颖的治疗方法。纳米颗粒是多种化学家的高效药物输送系统之一,从过去的三十年来开始引起极大的关注。精心设计的纳米颗粒具有穿越BBB和BTB的效果,并精确地将化学疗法传递到GBM组织/细胞中。纳米颗粒可以封装亲水性和亲脂性药物,基因,蛋白质和肽,通过保护药物免受降解,改善血浆半寿命,减少不良反应并控制所需部位的药物/基因的释放,从而提高药物的稳定性。This review focussed on the different signaling pathways altered in GBM cells to understand the rationale behind select- ing new therapeutic targets, challenges in the drug delivery to the GBM, various transport routes in brain delivery, and recent advances in targeted delivery of different drug and gene load- ed various lipidic, polymeric and inorganic nanoparticles in the effective management of GBM.
