肽和蛋白质分别是氨基酸的短链和长链。表达的肽和蛋白质在生物学变异中起着重要而突出的作用,包括控制代谢,调节骨骼代谢,清除自由基,改变睾丸激素水平以及对某些疾病的治疗[1-6]。令人惊讶的是,只有二十个基因编码的氨基酸是自然界中发现的肽的基础,可以将其分为两个主要类别的亲水性和疏水性氨基酸。如方案1所示,ALA,Val,Leu,Ile,Met,Phe,Phe,Tyr和TRP的非极性烃链使它们成为亲脂性,疏水性氨基酸。虽然官能团的存在,例如羟基,酰胺,吡唑,鸟苷,胺,羧酸和硫醇,导致SER,THR,THR,THR,ASN,ASN,GLU,HIS,HIS,LYS,LYS,LYS,LYS,LYS,ASP,ASP,GLU,GLU,GLU,GLU,GLU,GLY,GLY,GLY和CYS的亲水性能(方案2)。这些氨基酸的排列共同导致具有不同亲水性,疏水性或两亲性特性的肽折叠[7]。
可以使用完全合成的,分离的DNA-纳米动物模仿生物分子冷凝物,从而模仿相位分离,从而在几种功能性纳米材料中实现明显的控制和性能的增加。干细胞表现出控制和执行基因转录到RNA的大分子的突出簇,这也通过相分离机制形成。由于两亲性效应,被转录的基因可以展开甚至分散这些簇。在这里,我们用具有纳米固定剂的聚胸腺素尾巴部署两亲性DNA的纳米t,以重现由DNA-纳米动物形成的液滴的生物学观察到的诱导型。我们使用多能斑马鱼胚细胞中转录簇的超分辨率显微镜图像作为生物参考数据。延时显微镜,两亲性滴定实验和Langevin动力学模拟表明,将两亲 - 莫蒂夫添加到合成系统中会重现胚胎细胞中转录簇看到的形状变化和分散。我们的工作说明了生物模型系统的组织原理如何指导实施新的方法来控制合成纳米材料的介观组织。
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
摘要:利用分子自组装选择性杀灭细胞是癌症治疗的一个新兴概念。据报道,分子自组装是由癌细胞内或外精心设计的分子水解引发的。由于生物系统中水分充足,这种水解可能发生在癌细胞和正常细胞中。本文,我们报告了利用癌细胞中过表达的酪氨酸激酶原位合成自组装分子。我们设计了一种含酪氨酸的肽两亲物 (C16-E4Y),该肽两亲物被过表达的酪氨酸激酶转化为磷酸化肽两亲物 (C16-E4pY)。C16-E4Y 的磷酸化促进了自组装,在癌细胞中形成纳米纤维。C16-E4Y 对过表达酪氨酸激酶的癌细胞表现出选择性细胞毒性。自组装的 C16-E4pY 诱导内质网应激,导致细胞凋亡。动物实验表明 C16-E4Y 具有抗肿瘤活性。这些结果表明,癌细胞中过表达的酶可用于细胞内合成具有细胞选择性的抗肿瘤自组装药物。关键词:低分子量胶凝剂、自组装、酪氨酸激酶、抗癌药物、肽脂质 ■ 介绍
两性离子表面因其具有抵抗蛋白质、细菌和细胞粘附的倾向而越来越多地被用作防污涂层,并且通常以聚合物系统的形式应用。据报道,强相互作用的小分子两亲分子的自组装可产生用于防污应用的纳米带。合成的两亲分子自发形成具有纳米级横截面的微米长纳米带,并且本质上在其表面上显示出致密的两性离子部分涂层。涂有纳米带的基质表现出浓度依赖性厚度和近乎超亲水性。然后探测这些表面涂层的防污性能,结果表明,与未涂层对照相比,蛋白质吸附、细菌生物膜形成和细胞粘附均显着降低。利用粘性小分子自组装纳米材料进行表面涂层为有效的防污表面提供了一种简便的途径。
基于有机尾巴中具有不同刚度的不同刚性的三组聚二碱(POM)的两亲性杂交大分子用作模型,以了解分子刚性在自组装过程中可能的自我认知功能的分子刚度对其可能的自我认识的影响。在两个结构相似的球形rigid T形T形连接的寡素(TOF 4)杆的混合溶液中实现了自我识别,分别是Anderson(Anderson-TOF 4)和Dawson(Dawson-Tof 4),而亲水群是Anderson(Anderson-TOF 4)。Anderson-TOF 4被观察到自组装成洋葱样的多层结构,而Dawson-tof 4形式的多层囊泡。自组装由疏水棒的互插和带电的亲水性无机簇中的反座介导的吸引力。当疏水块不太刚性时,例如部分刚性的聚苯乙烯和完全灵活的烷基链时,未观察到自识别,这归因于疏水性分子在杂质域中的疏水构象。这项研究表明,由于溶性结构域的刚性,由于超分子结构的几何限制可以实现两亲物之间的自我识别。
