CHIREC 国际学校,印度海得拉巴 摘要 截至 2023 年 11 月,已有 676 人进入太空。随着这个数字每年都在不断上升,并且进一步的长期太空探索计划甚至延伸到 2030 年代,对恶劣太空条件对人体生理、遗传学和一般系统带来的挑战进行全面分析变得越来越重要。了解这些因素反过来可以帮助重塑地球上的医疗技术,例如使用压力可调节服来对抗产后出血患者的极端加速和重力变化。本文深入探讨了两个主要主题:首先,微重力、银河宇宙射线和隔离等条件对端粒长度、神经眼科和心脏病学等系统的影响;其次,通过分析 NASA 双胞胎研究以及医学应用的二次研究,这些困难如何用于推进地球疾病的治疗。这对于为未来的太空任务和医学的可能发展(无论是在太空还是在地球上)制定框架和参考领域至关重要。关键词:太空条件、NASA 双胞胎研究、人体生理学、遗传学、医学应用。简介 本文的目的是评估微重力、银河宇宙射线(一种太空辐射)和物理隔离对端粒长度、DNA损伤反应、免疫反应、肌肉系统、线粒体、心脏病学、神经眼系统、心理学(“脱离”效应)和认知表现的影响,以及这些影响如何在综合现有研究并提供新视角的同时,为地球医学带来新的进步。2015 年 3 月,NASA(美国国家航空航天局)的 HRP(人类研究计划)对一对同卵双胞胎宇航员启动了一项为期 340 天的调查,称为 NASA 双胞胎研究 1 。调查的目的是“观察宇航员在太空环境中与地球上的日常生活相比,在身体、分子和认知方面会发生什么变化”(NASA 2 )。
09:15 AM- 09:45 AM“微流体人体生理肝模型作为药物诱导肝损伤的筛查平台”。教授。Biman B. Mandal,生物科学与生物工程系,IIT Guwahati
刺激响应性纳米平台的结构和特性对环境因素敏感,可用于按需释放药物到病理部位。1 然而,由于人体生理的复杂性,使用响应生理刺激(即 pH、酶和还原剂)的纳米粒子精确控制药物释放仍然具有挑战性。为此,已经开发出各种响应外部刺激(即光、超声波、电场和磁场)的药物输送系统 (DDS)。2 其中,光响应系统脱颖而出,因为光能够以高时空分辨率对目标释放进行远程和非侵入性控制。3,4 通常外部光用于影响光敏部分的化学结构和/或极性,例如偶氮苯、5 螺吡喃 6
由于人们正在考虑让人机团队执行各种混合主动性任务,因此检测和响应人类的认知状态(尤其是系统认知状态)是人工智能系统确保与人类顺畅交互和团队整体高绩效的最关键能力之一。各种人体生理参数,如心率、呼吸频率、血压和皮肤电导率,以及从功能性近红外光谱或脑电图推断出的大脑活动,都与不同的系统认知状态有关,如工作量、分心或走神等。这些多模态信号是否足以在执行任务的个体之间隔离这些认知状态,或者是否需要额外的上下文信息(例如,关于任务状态或任务环境)来做出适当的推断,仍然是一个重要的未决问题。
空间智能机器人不受人体生理条件的限制,将其用于太空探索与利用是自动化技术发展的一个有吸引力的选择,目前是世界各航天大国的重点发展方向。本文首先研究了面向空间站的机械臂和仿人机器人系统,综述了机器人实现大范围稳定运动和智能灵巧操控的理论与方法。然后,综述了用于在轨卫星维护的智能机器人系统,分析了多机器人协作的相关技术。最后,研究了用于大型空间结构在轨装配的智能机器人系统,总结了模块化装配和在轨制造技术。总体而言,本文回顾了空间机器人的技术进展和发展趋势,为该领域的进一步技术研究提供了很好的参考。
这篇评论文章深入研究了重力领域,介绍了人造重力的复杂情况及其对肌肉骨骼系统的影响,揭开了围绕这项技术应用的谜团。因此,本文探讨了人造重力对肌肉骨骼系统的影响,分析了其积极和消极影响。为了实现这一目标,我们分析了关于这个主题的几项研究,重点研究了短臂离心机实验的使用情况。人造重力最初是在 19 世纪作为应对微重力环境严重生理影响的对策而提出的,当科学家意识到短时间的太空飞行对人体生理的影响微乎其微时,人造重力并不是优先考虑的事情。然而,随着即将到来的月球和火星长期任务的新计划和雄心勃勃的计划,人们对人造重力的兴趣再次高涨。人类在太空飞行 50 多年的经验表明,需要采取像人工重力这样的有效对策。提出的对策之一是阻力训练,虽然有益,但不能完全完成保持肌肉质量的任务,这会导致宇航员耗费大量时间。国际空间站中当前进行的锻炼的局限性,凸显了人工重力作为更完整的综合解决方案的潜力。尽管实施人工重力带来了后勤和财务挑战,但其潜在的好处使其成为未来太空任务非常值得投资的技术。模拟微重力效应的卧床研究(例如在 AGBRESA 中进行的研究)为了解生理对人工重力的反应提供了宝贵的见解。然而,人们担心使用它可能会产生负面影响,因为人工重力和失重交替可能会损害人体生理。因此,在本文中,我们分析了对进行卧床休息研究的受试者的研究,特别是研究对肌肉骨骼系统的影响;最后,我们回顾了不同的潜在副作用并对我们的研究结果得出结论。总之,本综述强调了人工重力作为对抗失重对肌肉骨骼系统的破坏性影响的对策的重要作用。未来的太空探索需要更好地处理失重影响减轻的技术,如人工重力。因此,应该对它的研究投入更多。
摘要:煤矿噪声影响人的生理、心理和行为,导致工作失误,增加事故发生率。本研究构建了煤矿噪声模拟实验系统,系统不仅包括实验环境模拟系统和生理指标测试系统,还增加了矿工工作模拟系统。研究不同短时(25 min)噪声水平(60 dB、70 dB、80 dB、90 dB、100 dB)对人体生理(皮肤电导率和心率)的影响。分析表明,噪声强度越强,生理指标出现明显变化的接触时间越短,通过设置不同的噪声并测量人体的皮肤电导率和心率,得出应将噪声水平降至90 dB以减少矿工事故的结论。
摘要 太空飞行对人体产生了无数不利影响。改进的飞行营养策略有助于减轻这些不利影响。本综述探讨了太空飞行如何改变人体生理,以及改进的飞行营养策略如何满足微重力环境产生的独特饮食需求。讨论了满足这些需求的饮食方法和建议。本综述还介绍了长期载人航天飞行的食品可持续性方法、精准营养如何帮助飞行饮食处方,以及可穿戴技术如何帮助监测长期载人航天飞行期间的饮食状况和健康状况。本综述描述了太空飞行带来的不利变化的程度,以及关于改进的飞行营养策略如何减轻不利变化的当前知识库。可穿戴
生物启示是一个多学科领域,涉及用于测量,监测和操纵生物系统的系统和设备的开发和应用。通过提供有关人体生理,生化和电气参数的精确数据,这些仪器在医学诊断,研究和治疗中起着至关重要的作用。生物工程,电子和医学科学的整合导致创建了各种设备,这些设备从简单的温度计到MRI和CT扫描仪(例如MRI和CT扫描仪)的复杂成像技术。本文探讨了生物启示的范围,其在医疗保健中的应用,该领域的挑战以及生物启发技术的未来方向。随着技术的快速发展,生物启示仍然是改善患者护理,实现早期疾病检测并增强治疗性干预措施的关键工具。
条件下,因此缺乏身体准备或对某些症状的清晰感知会导致身体衰竭,甚至死亡。7,8 尽管技术发展为人体工程学设计、软件、硬件和空中交通管制技术带来了进步,对飞行安全产生了积极影响,但人为因素的存在仍然是航空事故的主要原因。9–11 空间定向障碍是很大比例军事航空事故的重要因素。虽然先前的研究分析了事故统计数据,但它们往往存在方法上的缺陷,导致对民用和军用飞机事故的真正原因得出的结论值得怀疑。12,13 特技飞行可以显著改变飞行员的空间定向能力。通过这种方式,应该研究与空中活动相关的人体生理固有因素;颅内压 (ICP) 是一个重要的临床变量,医生和航空航天专业人员仍然无法获得。ICP 是颅腔内的压力。三种成分填充该空间:血液、脑脊液和脑组织,其中一种或多种成分的改变会导致颅内压的变化,14 例如动脉血压的波动。