摘要 —本文介绍了一种基于分散 Voronoi 的线性模型预测控制 (MPC) 技术,用于在有界区域内部署和重构由无人机 (UAV) 组成的多智能体系统。在每个时刻,该区域被划分为与每个 UAV 智能体相关联的不重叠的时变 Voronoi 单元。编队部署目标是根据每个 Voronoi 单元的 Chebyshev 中心将智能体驱动到静态配置中。所提出的基于 MPC 的编队重构算法不仅允许有故障/不合作的智能体离开编队,还允许恢复/健康的智能体加入当前编队,同时避免碰撞。仿真结果验证了所提出的控制算法的有效性。
人机系统集成 (HSI) 是系统工程 (SE) 的必要组成部分,还是相反(即 SE 是 HSI 的必要组成部分)?这完全取决于视角!如果您是一位以技术为中心的工程师,SE 将为您提供开发技术系统的方法和工具,并且您将需要人为因素专家来开发用户界面并测试最终产品的可用性。从这个角度来看,HSI 是 SE 的必要组成部分。但是,如果您是一位以人为本的设计师,您将需要方法和工具来设计和开发系统,从设计之初到系统退役,将人机需求整合在一起。这提出了我们所说的“系统”是什么意思的问题。系统只是一种表示,有助于弄清楚人和机器的物理和认知功能和结构。本章涵盖了与 HSI 相关的几个领域,包括任务和活动分析、认知工程、组织设计和管理、功能分配、复杂性分析、建模和人在环仿真 (HITLS)。当代 HSI 设计方法由虚拟 HITLS 支持,这涉及有形性问题。开始讨论应收集的各种数据和有形性指标以开发适当的 HSI。提供了一个航空示例来说明在系统设计和开发中应如何开发 HSI
人机系统集成 (HSI) 是系统工程 (SE) 的必要组成部分,还是相反(即 SE 是 HSI 的必要组成部分)?这完全取决于视角!如果您是一位以技术为中心的工程师,SE 将为您提供开发技术系统的方法和工具,并且您将需要人为因素专家来开发用户界面并测试最终产品的可用性。从这个角度来看,HSI 是 SE 的必要组成部分。但是,如果您是一位以人为本的设计师,您将需要方法和工具来设计和开发系统,从设计之初到系统退役,将人机需求整合在一起。这提出了我们所说的“系统”是什么意思的问题。系统只是一种表示,有助于弄清楚人和机器的物理和认知功能和结构。本章涵盖了与 HSI 相关的几个领域,包括任务和活动分析、认知工程、组织设计和管理、功能分配、复杂性分析、建模和人在环仿真 (HITLS)。当代 HSI 设计方法由虚拟 HITLS 支持,这涉及有形性问题。开始讨论应收集的各种数据和有形性指标以开发适当的 HSI。提供了一个航空示例来说明在系统设计和开发中应如何开发 HSI
摘要 — 如今,由飞行无人机(无人机系统(UAS))组成的系统的操作数量的增长引发了公众对网络安全问题的担忧。因此必须考虑到这个方面,为此我们建议在 UAS 开发过程中制定方法来解决这些问题。这个主题是我们研究的核心。本论文在这方面做出了两个重要贡献。第一个是以系统为中心的方法,旨在增强现有(或设计的)UAS的网络安全性。该方法为用户提供了一个“工作流程”来分析 UAS、识别可能的攻击场景和适当的对策。我们将这种方法称为“面向网络安全的系统风险管理”。第二种方法以运营为中心,从初始系统设计阶段就考虑到网络安全问题。该方法被设计为“特定操作风险评估”(SORA)方法的扩展版本。这种选择的原因是,SORA 是评估所谓“特定”UAS 操作风险的参考方法。由于 SORA 方法仅关注安全性而忽略了网络安全,我们的扩展模块旨在弥补这一不足。我们的扩展方法称为“安全和网络安全特定操作风险评估”(SORA-C2S)。基于此方法论,我们构建了一个网络工具,帮助用户以半自动化的方式进行风险评估,同时考虑到运营安全和网络安全这两个方面。本论文是Sogilis公司与Gipsa-lab实验室合作的一部分。
本演示文稿由 Scholarly Commons 的会议免费提供给您,供您开放访问。它已被 Scholarly Commons 的授权管理员接受纳入国家训练飞机研讨会 (NTAS)。欲了解更多信息,请联系 commons@erau.edu 。
3.1 概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 3.2 WAS场景设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 3.3 软件设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 3.4 测试定义。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..............47 3.5 迭代开发。..........。。。。。。。。。。。。。。。。。。。。。。。。........50 3.6 自动化测试 .............。。。。。。。。。。。。。。。。。。。。。。。。......51 3.7 指标和所需数据 ...............。。。。。。。。。。。。。。。。。。。。。。。54 3.8 因子和水平选择 .....................。。。。。。。。。。。。。。。.57 3.9 多重响应优化。.....................。。。。。。。。。60 3.10 总结。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62
stm.com.tr › uploads › docs › 168... PDF 2022年8月8日 — 2022年8月8日 10.1英寸触摸屏... ALPAGU®固定翼自主战术攻击无人机专为...任务规划和自主任务执行。
无人机系统 (UAS),通常称为无人机,已迅速普及,可供民族国家、非国家行为者和个人使用。这些系统可以为美国的对手提供一种低成本的手段,对美国军队进行情报、监视和侦察任务,甚至攻击美国军队。此外,许多较小的 UAS 由于其尺寸、建筑材料和飞行高度而无法被传统防空系统探测到。因此,在 2023 财年,国防部 (DOD) 计划在反无人机 (C-UAS) 研发上至少花费 6.68 亿美元,在 C-UAS 采购上至少花费 7800 万美元。随着国防部继续开发、采购和部署这些系统,国会对其使用的监督可能会增加,国会可能不得不就未来的授权、拨款和其他立法行动做出决定。
摘要 本文报告了弗劳恩霍夫 IZFP 进行的一项调查,其中旋翼八旋翼微型飞行器 (MAV) 系统用于扫描建筑物,以使用高分辨率数码相机进行检查和监控。MAV 配备了基于微控制器的飞行控制系统和不同的传感器,用于导航和飞行稳定。照片以高速度和高频率拍摄,并存储在机上,然后在 MAV 完成任务后下载。然后将拍摄的照片拼接在一起,以获得完整的 2D 图像,其分辨率允许在毫米范围内观察到损坏和开裂。在后续步骤中,开发了一种图像处理软件,可以专门过滤掉开裂模式,这些模式可以在未来的步骤中从统计模式识别的角度进一步分析。引言民用基础设施建筑数量的增加已成为其老化过程和生命周期管理的一个问题。监测这些建筑物状况的传统方法是仅通过人工目视检查,可能还需要一些抽头测试。这种监测方式主要提供有关混凝土或石材结构开裂情况和可能脱落的覆盖层的完整信息。当考虑大坝、冷却塔、教堂或甚至简单的多层建筑的结构时,提供这些信息所需的努力可能会变得费力,因为检查需要大量的起重设备。一种规避这种努力的方法是使用无人驾驶飞行器 (UAV) 以及甚至小型的微型飞行器 (MAV) 作为机载传感器系统来捕获所需的数据。这种无人机在无损检测 (NDT) 中的潜在应用 _____________
认知工作建模可以支持对稳健性和弹性的评估。UTM 等复杂工作领域的工作由工作环境中的约束和动态驱动,这些约束和动态可以识别和编码(Vicente,1999 年)。一旦编码,就可以模拟模型来评估此类工作的动态(Pritchett、Bhattacharyya 和 IJtsma,2016 年;Pritchett、Feigh、Kim 和 Kannan,2014 年)。我们认为,对于评估未来 UTM 运营中的弹性,知识获取和建模可以成为形成性和迭代周期的一部分,在该周期中,对系统特性和响应的探索支持对设计要求的识别,类似于 Vicente(1999 年)和 Woods & Roth(1994 年)。在本文中,我们结合认知演练和边缘案例场景的计算建模和模拟,对 UTM 系统的稳健性和弹性进行基于模型的探索。