a th(hol)02 F 0.65 / 0.65 CO 0.65 / 0.25 / 0.25 CO 0.25 1.385] b 0.57 0.272)025 / 0.65 / 0.65 / 0.65 / 0.65
将它们与 ¯ P 分离(见方程 3 和 5)。因此,图 4(a)显示了参数 ¯ Pγ 2(机械损耗)和 ¯ Pp 2 0(介电损耗)与密度 ρ 的关系,图 4(b)显示了参数 ¯ Pγ 2(机械损耗)和 ¯ Pp 2 0(介电损耗)与密度 ρ 的关系。
高频信号传输,低介电常数(D K)和低介电损耗因子(D F)的替代品以取代传统的二氧化硅材料。4 - 6聚酰亚胺(PI)通常被评为合适的候选者,因为其低分子极化性以及出色的热,机械和化学耐药性特征,并且在电信和微电子工业中表现出了理想的前景。7当前,低二型聚合物材料的结构和组成设计主要集中于结构修饰,改进材料制造过程和复合修饰。常规PI的固有介电常数位于约3.5中,但是,通常需要较低的值以最大程度地减少超大尺度集成电路,高频通信天线基板和毫米波雷达的层间介电信号传输的功率耗散和延迟。8 - 11通过减少主链上酰亚胺基团之间的极化,已经研究了许多方法来减少介电常数和PI的介电损失。12 PI聚合物的分子结构在其介电特性中起主要作用。固有偶极矩和
摘要:在目前的工作中,采用共沉淀方法合成BAFE2O4纳米颗粒。通过机械混合和成型方法进行的BAFE2O4/MWCNT/EPOXY纳米复合材料的制造。制备的纳米复合材料的特征是X射线衍射,UV-VIS光谱和阻抗光谱。使用Debye Scherrer公式,发现BAFE2O4的粒径约为9.457 nm。在室温下进行纳米复合材料的阻抗光谱测量,并观察到介电常数的值随频率的增加而降低,并且介电损耗随频率的增加而增加。ecb-5(BAFE2O4的40 wt%)复合材料的介电常数的最大值,其中MWCNT的WT%保持在2。发现ECB-5复合材料的介电损耗在较低的频率下为〜0.05,并且该值随频率的增加而增加。
摘要:采用化学酰亚胺化法制备了具有刚性聚合物主链的氟化芳香族聚酰亚胺 (FAPI) 薄膜。聚酰亚胺薄膜表现出优异的力学性能,包括高达 8.4 GPa 的弹性模量和高达 326.7 MPa 的拉伸强度,以及突出的热稳定性,包括玻璃化转变温度 (T g ) 为 346.3–351.6 ◦ C 和空气中的热分解温度 (T d5 ) 为 544.1–612.3 ◦ C,以及在 500 nm 处>81.2% 的高无色透过率。此外,聚酰亚胺薄膜在 10–60 GHz 下表现出稳定的介电常数和低介电损耗,这归因于刚性聚合物主链的紧密堆积限制了电场中偶极子的偏转。还建立了分子动力学模拟来描述分子结构和介电损耗的关系。
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
厚膜技术应用 厚膜技术是 PCB 生产技术的替代方案,因此在厚膜网络设计中也应用了类似的规则。该技术用于要求长寿命、耐热性、机械强度、热导率、电气强度、低介电损耗等要求苛刻的应用。印刷氧化铝基板在腐蚀性环境中以及 FR4 等传统材料失效的情况下非常有用。它们应用于汽车和航空航天工业、医疗工业、LED 照明、电力电子、混合微电子、微波电路、传感器、电子元件等。
聚氯乙烯(PVC)膜OM的光学和电性能。Abdullah,Dana A. Tahir,Shuja-Aldeen B. Aziz物理系,Al Sulaimani大学科学学院。 Sulaimani - 伊拉克。 摘要研究了聚氯乙烯薄膜的光学特性,其中包括它们的吸光度,透射率,反射光谱,带隙和折射率,在C T t = 75 = 75 =持续数小时24。 发现薄膜在可见的和接近1100 nm的红外区域表现出很高的透射率,低吸光度和低反射率。 然而,在超紫罗兰色地区发现薄膜的吸光度很高,峰值约为306 nm。 在不同频率和温度下获得了介电常数ε',介电损耗ε''和聚氯化氯化物的交流电导率。 实验结果表明,ε'和ε''随着频率的增加而降低,这表明对极化的主要贡献来自方向极化。 ε'的值随温度的增加而增加,这是由于高温下偶极子分子链的运动自由。 ﺍﻟﺨﺼﺎﺌﺹ ﺍﻟﺨﺼﺎﺌﺹ ﻭ ﺍﻟﻜﻬﺭﺒﺎﺌﻴﺔ ﻷﻏﺸﻴﺔ ﻷﻏﺸﻴﺔ ﺒﻭﻟﻴﻔﻴﻨﻴ)Abdullah,Dana A. Tahir,Shuja-Aldeen B. Aziz物理系,Al Sulaimani大学科学学院。Sulaimani - 伊拉克。摘要研究了聚氯乙烯薄膜的光学特性,其中包括它们的吸光度,透射率,反射光谱,带隙和折射率,在C T t = 75 = 75 =持续数小时24。发现薄膜在可见的和接近1100 nm的红外区域表现出很高的透射率,低吸光度和低反射率。然而,在超紫罗兰色地区发现薄膜的吸光度很高,峰值约为306 nm。在不同频率和温度下获得了介电常数ε',介电损耗ε''和聚氯化氯化物的交流电导率。实验结果表明,ε'和ε''随着频率的增加而降低,这表明对极化的主要贡献来自方向极化。ε'的值随温度的增加而增加,这是由于高温下偶极子分子链的运动自由。ﺍﻟﺨﺼﺎﺌﺹ ﺍﻟﺨﺼﺎﺌﺹ ﻭ ﺍﻟﻜﻬﺭﺒﺎﺌﻴﺔ ﻷﻏﺸﻴﺔ ﻷﻏﺸﻴﺔ ﺒﻭﻟﻴﻔﻴﻨﻴ)
定义了一种用于评估电热 (EC) 材料冷却效率的新品质因数,其中将热性能与材料的损耗共同考虑。使用专门开发的基于柔性热敏电阻的测量装置,直接测量 P(VDF-TrFE-CFE) 电热聚合物薄膜的热效应和损耗。利用这些数据与新的品质因数,可以推断出所研究的 EC 材料在实际工作条件下的预期冷却效率。介电损耗是实现所需冷却性能的主要限制因素。这一发现表明,除了研究巨大的热响应之外,还必须将减少材料损失视为研究用于冷却应用的最佳 EC 制冷剂的关键目标。最后,概述了一些减少损失的策略。