版权所有 © 2023 Mizukoshi 等人。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确署名原始作品。
摘要 海洋生态系统富含“omega-3”长链(C 20-24)多不饱和脂肪酸 (LC-PUFA)。人们历来认为,这些脂肪酸的产生主要来自海洋微生物。最近,这一长期存在的教条受到了挑战,因为人们发现,许多无脊椎动物(大多生活在水中)都具有从头合成多不饱和脂肪酸 (PUFA) 和从中合成 LC-PUFA 所必需的酶机制。关键突破是在这些动物中检测到了称为“甲基末端去饱和酶”的酶,这种酶能够实现 PUFA 的从头合成。此外,在几种非脊椎动物门中,还发现了在 LC-PUFA 生物合成中起关键作用的其他酶,包括前端去饱和酶和极长链脂肪酸蛋白的延长。本综述全面概述了这些基因/蛋白质家族在水生动物(尤其是无脊椎动物和鱼类)中的补充和功能。因此,我们扩展并重新定义了我们之前对脊索动物中存在的 LC-PUFA 生物合成酶的修订,并将其应用于整个动物,讨论了关键的基因组事件如何决定不同分类群中去饱和酶和延长酶基因的多样性和分布。我们得出结论,无脊椎动物和鱼类都表现出活跃但明显不同的 LC-PUFA 生物合成基因网络,这是由复杂的进化路径与功能多样化和可塑性相结合的结果。关键词水生生态系统、生物合成、极长链脂肪酸蛋白的延长、前端去饱和酶、长链多不饱和脂肪酸、甲基端去饱和酶、ω-3
DNA 化学修饰是改善寡核苷酸特性的常用策略,尤其适用于治疗和纳米技术。现有的合成方法主要依赖于亚磷酰胺化学或核苷三磷酸的聚合,但在规模、可扩展性和可持续性方面受到限制。在此,我们报告了一种使用模板依赖性短片段 DNA 连接的从头合成修饰寡核苷酸的可靠替代方法。我们的方法基于化学修饰的短单磷酸盐作为 T3 DNA 连接酶底物的快速和可扩展性。该方法表现出对化学修饰的高耐受性、灵活性和整体效率,从而最终可以获得各种不同长度(20 → 120 个核苷酸)的修饰寡核苷酸。我们已将该方法应用于临床相关的反义药物和各种修饰的超聚体的合成。此外,设计的化学酶方法在治疗和生物技术领域具有巨大的应用潜力。
DNA的化学修饰是改善寡核苷酸的特性,特别是用于治疗和纳米技术的常见策略。存在的合成方法基本上依赖于磷光化学或三磷酸核苷的聚合,但在大小,可伸缩性和可持续性方面受到限制。在本文中,我们报告了一种使用模板依赖性DNA连接的短片片段,用于从头合成修饰的寡核苷酸。我们的方法基于化学修饰的Shortmer单粒子作为T3 DNA连接酶的底物的快速而缩放的可访问性。这种方法表明对化学修饰,灵活性和整体效率表现出很高的耐受性,从而允许访问具有不同长度(20→120个核苷酸)的广泛修饰的寡核苷酸。我们已将这种方法应用于临床相关的反义药物和含有多种模块化的超义药物的合成。此外,设计的化学酶方法在治疗和生物技术中具有巨大的应用潜力。
国防高级研究项目局(DARPA)生物技术办公室(BTO)试图更好地了解生物技术的进步和差距,这可能有助于在体内合成从头DNA和RNA序列的能力。该RFI的目的是收集有关开发体内平台(即在活细胞中)合成DNA/RNA的可能性和挑战的信息,其中核酸序列由身体刺激的模式(即光学,机械,声音,电气,热,热等等)精确定义。而不是使用DNA/RNA模板链。最终目的是对于这种不含模板的从头合成(即能够产生可能不是基于自然序列的任意序列)的机制,以产生可以将DNA/RNA转化为功能蛋白的DNA/RNA(图1)。DARPA可能会选择在2025年5月1日在弗吉尼亚州阿灵顿举行的该RFI主题举办的研讨会,并可能邀请该RFI的一部分受访者参加该研讨会,在这种情况下,他们的旅行费用将被偿还。
尽管科学发展迅速,但癌症仍然是一种致命疾病。人们认为癌症的发展受到脂肪酸的显著影响。据报道,癌细胞中控制脂肪酸吸收和代谢的几种机制发生了改变,以支持其存活。如果一种方法受到限制,癌细胞可以利用从头合成或吸收细胞外脂肪酸。这一因素使得针对一种途径而无法正确治疗疾病变得更加困难。如果几种抑制剂同时针对许多靶点,也可能产生副作用。如果一种可行的抑制剂可以作用于多种途径,负面影响的数量可能会减少。针对细胞活力的比较研究发现了几种有效的天然和人造物质。在这篇综述中,我们讨论了脂肪酸在肿瘤发展和癌症进展中发挥的复杂作用、新发现的可能有效的阻断脂肪酸吸收和代谢的天然和合成化合物、使用多种抑制剂治疗癌症时可能出现的不良副作用以及新兴的治疗方法。
摘要:(2 s) - eriodictyol(ERD)是一种在柑橘类水果,蔬菜和具有神经保护性,心脏保护性,抗糖尿病和抗肥胖作用的不良药物植物中广泛发现的avonoid。但是,ERD的微生物合成受复杂的代谢途径的限制,并且通常导致生产较低。在这里,我们通过调节ERD合成途径的代谢来设计酿酒酵母。结果表明,ERD滴度有效增加,中间代谢物水平降低。首先,我们成功地重建了酿酒酵母中p-奶油酸的从头合成途径,并使用启动子工程和终端工程进行了代谢途径,用于高级生产(2 s) - 纳林宁。随后,通过从Tricyrtis hirta引入Thf3'H基因来实现ERD的合成。最后,通过乘以Thf3'h基因的拷贝数,ERD的产生进一步增加,达到132.08 mg l -1。我们的工作强调了调节代谢平衡以在微生物细胞工厂生产天然产物的重要性。
摘要 铁硫 (Fe-S) 簇是普遍存在的无机辅因子,是许多细胞必需途径所必需的。由于它们不能从环境中清除,因此 Fe-S 簇在细胞区室(如顶质体、线粒体和细胞质)中从头合成。细胞质 Fe-S 簇生物合成途径依赖于线粒体途径中间体的运输。一种称为 ABCB7 的 ATP 结合盒 (ABC) 转运蛋白在许多常见研究的生物体中负责这一作用,但它在医学上重要的顶复门寄生虫中的作用尚未被研究。在这里,我们识别并描述了一种弓形虫 ABCB7 同源物,我们将其命名为 ABCB7-like (ABCB7L)。基因耗竭表明它对寄生虫的生长至关重要,并且它的破坏会触发部分阶段转换。敲除系的表征突出了细胞质和细胞核 Fe-S 蛋白的生物合成缺陷,导致蛋白质翻译和其他途径(包括 DNA 和 RNA 复制和代谢)出现缺陷。我们的工作为广泛保留 Fe-S 簇生物合成中线粒体和细胞质途径之间的联系提供了支持,并揭示了其对寄生虫生存的重要性。
基因组工程项目通常利用细菌人工染色体 (BAC) 来携带低拷贝数的多千碱基 DNA 片段。然而,全基因组工程的所有阶段都有可能对合成基因组施加突变,从而降低或消除最终菌株的适应性。在这里,我们描述了对多重自动基因组工程 (MAGE) 协议的改进,以提高重组频率和多路复用性。该协议用于重新编码大肠杆菌菌株,以在基因组范围内用同义替代词替换七个密码子。重新编码菌株的 BAC 中包含的 10 个 44 402–47 179 bp 从头合成 DNA 片段无法补充使用单个抗生素抗性标记所导致的相应 33–61 个野生型基因的缺失。下一代测序 (NGS) 用于识别每个片段中必需基因的 1-7 个非重编码突变,而 MAGE 反过来证明是一种有用的策略,可以在 BAC 中包含的重编码片段上修复这些突变,因为在修复过程中突变基因的重编码和野生型拷贝都必须存在。最后,使用两个基于网络的工具,使用蛋白质结构和功能调用来预测一组非重编码错义突变对菌株适应性的影响。
PAH1 编码的磷脂酸 (PA) 磷酸酶是生产储存脂质三酰甘油的主要二酰甘油来源,也是酿酒酵母中从头合成磷脂的关键调节剂。Pah1 的催化功能取决于其膜定位,这是通过多种蛋白激酶的磷酸化和 Nem1-Spo7 蛋白磷酸酶复合物的去磷酸化来介导的。全长 Pah1 由催化核心(N-LIP 和 HAD 样结构域、两亲螺旋和 WRDPLVDID 结构域)和非催化调节序列(内在无序区域、RP 结构域和酸性尾部)组成,用于磷酸化和与 Nem1-Spo7 相互作用。催化核心如何调节 Pah1 定位和细胞功能尚不清楚。在本研究中,我们分析了 Pah1 的一种变体(即 Pah1-CC(催化核心)),它仅由催化核心组成。在低拷贝质粒上表达的 Pah1-CC 无需 Nem1-Spo7 即可补充 pah1 Δ 突变体表型(例如核/ER 膜扩张、三酰甘油水平降低和脂滴形成)。Pah1-CC 的细胞功能由其与膜部分主要相关的 PA 磷酸酶活性支持。尽管 Pah1-CC 具有功能性,但它在蛋白质和酶学特性方面与 Pah1 不同,包括过表达毒性、与热休克蛋白的关联以及 V max 值的显著降低。这些关于 Pah1 催化核心的发现增强了对其膜定位和活性控制结构要求的理解。