胸苷酸合酶 (TS) 已在多种生物体中得到鉴定,并且是癌症化疗中已证实的靶点 (25)。TS 应该是白色念珠菌(一种常见的真菌病原体)的良好化疗靶点,因为该酶的产物 dTMP 只能在酵母中从头合成;酵母缺乏胸苷激酶,并且胸腺嘧啶、胸苷和 dTMP 无法渗透 (6)。有效抑制酵母中的 TS 会导致死亡,因为这些生物体无法产生自己的 dTMP 或从环境中获取它。5-氟胞嘧啶可在体外和体内抑制白色念珠菌和几种其他真菌 (3)。此外,用 5-氟胞嘧啶 (9) 处理白色念珠菌会导致 5-氟-dUMP 积累并抑制 TS,因此表明该酶是真菌的化疗靶点。从体外靶酶表征中获得的信息有助于设计新的潜在化疗剂。大量纯酶的可用性促进了此类研究。由于白色念珠菌培养物中存在低水平的 TS,因此在大肠杆菌中克隆和过表达了白色念珠菌 TS。我们报告了通过功能补充缺乏 TS 的酿酒酵母菌株分离白色念珠菌 TS 基因。该基因的序列包括基因 5' 端约 400 个碱基对 (bp) 的 DNA 和一段较短的 3' 侧翼区,并使用 T7 表达载体在大肠杆菌中表达。制备了来自白色念珠菌和大肠杆菌的纯化酶,并检查了其特性,以确保在大肠杆菌中表达的克隆 TS 酶与白色念珠菌的天然 TS 酶相同。
黄粉虫 ( Tenebrio molitor ) 在暴露于紫外线 B (UVB) 辐射时会从头合成维生素 D3。尽管维生素 D 在脊椎动物的代谢和免疫过程中的作用众所周知,但它在昆虫生理学中的意义尚不明确。200 只黄粉虫分别接受 UVB 暴露或未接受 UVB 暴露(对照)两周,然后接受昆虫病原真菌 ( Beauveria bassiana ) 处理,以评估维生素 D 作为免疫刺激剂的潜力。在真菌攻击之前 (D0) 和 7 天 (D7) 和 14 天 (D14) 后测定存活率和体重。此外,在这些天中采集子样本进行差异基因表达分析。暴露于 UVB 不会影响存活率,但对照组的黄粉虫在 D0 时的平均体重高 1%,在 D14 时的平均体重高 16%。第 0 天的转录组分析显示 Toll 通路显著过表达,Toll 通路是介导昆虫细菌、真菌和病毒免疫的关键信号通路。此外,在 D0 时,UVB 暴露组的抗菌肽 (AMP) 基因(包括 Tenecin 4 、Coleoptericin B 、Attacin C 和 Defensin-like)表达高于对照组,但在 D7 或 D14 时则不然。这表明在 UVB 暴露后,黄粉虫的先天免疫反应短暂但显著增强。虽然这种情况在 D7 和 D14 并没有持续,但观察到的正向调节值得注意。这些发现与我们理解昆虫免疫学有关,并且可能在对抗某些病原体的商业饲养设施中得到应用。还需要进一步研究以确定持续 UVB 暴露导致的 AMP 基因表达增加是否意味着对白僵菌等病原体的保护能力增强。
二氢乳清酸脱氢酶 (DHODH) 是从头合成嘧啶所需的关键酶,由于受感染宿主细胞中病毒复制对嘧啶的需求量大,并且已被证实能够阻断免疫细胞释放细胞因子,从而防止炎症导致急性呼吸窘迫,因此建议将其作为 COVID19 治疗的靶标。目前有许多使用 DHODH 抑制剂治疗 COVID19 的临床试验正在进行中;但是,只有少数已知的 DHODH 拮抗剂可供测试。在这里,我们应用了一种方法来识别 DHODH 拮抗剂候选物,并使用计算机模拟靶标预测工具对它们进行了比较。从 DrugBank 获得的 7900 种 FDA 批准和临床阶段药物与 PDB 中可用的 20 种不同结构的 DHODH 进行了对接。Autodock Vina 根据药物的预测亲和力将其淘汰。大约剩下 28 种 FDA 批准的药物和 79 种正在进行临床试验的药物。使用 Autodock 4 和 DS Visualiser 重复对接分析了这些分子的相互作用模式。最后,通过 PASS 和 SwissTargetPrediction 工具确定了 28 种 FDA 批准药物的靶标区域预测。有趣的是,计算机模拟靶标预测分析显示,血清素-多巴胺受体拮抗剂也可能是潜在的 DHODH 抑制剂。我们的候选药物具有一个共同的属性,即可能与血清素-多巴胺受体以及其他氧化还原酶(如 DHODH)相互作用。此外,我们列表中的布鲁顿酪氨酸激酶抑制剂阿卡布替尼和血清素-多巴胺受体抑制剂药物在文献中已被证明对 Sars-CoV-2 有效,但活性途径尚未确定。确定一种既能抑制炎症又能抑制病毒增殖的有效药物将在 COVID 的治疗中发挥关键作用。因此,我们建议对 28 种 FDA 批准的药物对 DHODH 活性和 Sars-CoV-2 病毒增殖的影响进行实验研究。那些经实验证明有效的药物可以在 COVID19 治疗中发挥重要作用。此外,我们建议调查使用精神分裂症和抑郁症药物的患者的 COVID19 病例情况。
简介 肝脏中脂质的代谢、储存和流动在饥饿、饮食引起的肥胖、糖尿病和非酒精性脂肪性肝炎 (NASH) 中起着核心作用。肝脏在从头脂肪生成的主要位点和脂质氧化的主要位点之间切换时,脂质代谢的动态范围非常大。脂质合成、吸收、输出和氧化的平衡在代谢综合征的进展和发病机制中起着至关重要的作用,对于脂肪肝和 NASH 的发病率不断上升尤为重要。然而,就脂质代谢的作用而言,控制从正常代谢生理向病理生理转变的机制尚不清楚。从头合成或从饮食中吸收的脂肪酸以甘油三酯 (TG) 的形式储存在脂质滴中,并在能量不足时被动员起来,为线粒体的氧化代谢提供脂肪酸。在大多数情况下,甘油三酸酯水解酶脂肪甘油三酸酯脂肪酶 (Atgl;也称为 Pnpla2、desnutrin) 会调节甘油三酸酯从甘油三酸酯中释放脂肪酸 (1, 2)。Atgl 是甘油三酸酯水解中的第一个速率设定酶 (1–3),Atgl 或其辅激活剂 Cgi-58 的突变会导致人类中性脂质储存病 (4, 5)。这些疾病以及小鼠中 Atgl 的完全丧失会导致线粒体脂肪酸氧化缺陷。无法调动甘油三酸酯会导致线粒体缺乏脂肪酸并限制氧化代谢。此外,甘油三酸酯水解缺陷已显示表现出显著的转录缺陷 (3, 6–10)。也就是说,脂肪酸从脂质滴中释放是 Ppar α 介导的脂肪酸氧化转录编程调节的重要调节因子。因此,Atgl 对于提供脂肪酸氧化的底物和协调维持脂肪酸氧化所需的转录程序都很重要。脂肪酸在线粒体中被氧化,为肝细胞提供 ATP 和 NADH,以促进糖异生并产生乙酰辅酶 A,即生酮作用的碳底物。这使得肝脏能够缓冲血糖并在食物匮乏期间为高度氧化的组织提供替代燃料(酮体)。脂肪酸氧化在许多生物过程中的重要性从导致人类疾病的该途径中的多个突变中可以看出(11)。长链脂肪酸 β 氧化受活性脂肪酸(酰基辅酶 A)从细胞质到线粒体基质的受控易位控制。这是由连续的酰基转移酶肉碱棕榈酰转移酶 1 和