表 1–1:OIC/RSO 任命要求,第 4 页 表 2–1:间歇性大气铅暴露的呼吸区暴露限值,第 11 页 表 5–1:弹道航空目标系统表面危险区,第 22 页 表 6–1:对所列口径弹药提供积极防护的材料最小厚度,第 24 页 表 7–1:40 毫米机枪 MK19、MOD3 的表面危险区尺寸,第 32 页 表 8–1:反坦克火箭发射器 SDZ 标准,以米为单位,第 34 页 表 8–2:35 毫米 M73 练习火箭在不同象限仰角 (QE) 的最大射程,第 35 页 表 8–3:RAAWS/MAAWS SDZ 标准,以米为单位,第 37 页 表 8–4:AT–4 表面危险区标准,以米为单位,第 40 页 表 9–1:无后坐力步枪表面危险区标准(以米为单位),第43 表 9–2:在 15 ° 或更低象限仰角发射杀伤人员弹药所需的距离,第 43 页 表 10–1:迫击炮表面危险区标准,单位为米 1、2、3,第 47 页 表 10–2:基本影响区尺寸,第 49 页 表 11–1:基本影响区尺寸,第 51 页 表 11–2:野战炮火炮 SDZ 标准,单位为米,第 55 页 表 11–3:在有人装甲车上方爆炸的高度,单位为米,第 56 页 表 11–4:蜂巢 SDZ 标准,单位为米,第 57 页 表 11–5:ICM 弹药的最大射程数据来源,第 64 页 表 11–6:ICM 弹药的二级危险区(A、B 和 C),第 64 页 表 11–7:ICM 弹药的子导弹漂移因子,第65 表 11–8:文件
摘要 — 用于通信服务的卫星星座正变得越来越重要,Starlink 和 OneWeb 等多家公司都发射了由数百或数千颗卫星组成的星座。本论文研究了如何为直径约为 15 厘米的小型用户终端设计这样的星座。提出了四个星座,其中两个在 8500 公里高度,两个在 1200 公里高度。研究了在轨道平面上系统地放置卫星的方法、链路预算的方面以及国际上的相关法规。结果发现,最有利的星座是中地球轨道星座,最低仰角为 30 ◦。选择这种星座的主要原因是预算有限,无法发射大量卫星。最后,考虑了同时包含地球静止卫星和非地球静止卫星的混合星座的概念。
产品描述 L3Harris Hawklink AN/SRQ-4 船载终端是完全合格的通信系统,可满足美国海军 DDG-51、CG-47 和 FFG-7 级舰艇舰队的要求。控制系统采用现代开放系统架构,配备最新的触摸屏界面,便于控制和显示状态。强大的内置测试消除了复杂的支持设备,并减少了物流占用空间。42 英寸定向天线通过实施方位伪单脉冲跟踪同时开环指向仰角以避免水面多径欺骗,从而最大限度地提高链路性能。自动在全向天线和定向天线之间切换,实现从起飞到最大射程的无缝操作。完全合格的天线罩与现有船舶接口相匹配,并针对 Ku 波段进行了优化。
当反射面位于机场上或机场附近时,进行航空视角闪烁和眩光评估至关重要。在大多数情况下,应对机场当局确定的距离机场特定范围内的太阳能开发项目进行评估。对于许多机场来说,5 公里是首选距离,但也可以考虑 10 公里。在特殊情况下,可能需要在 10 公里以外进行评估。英国民航局和美国联邦航空局已就闪烁和眩光制定了指导方针,但它们都没有规定评估闪烁和眩光影响的具体方法。闪烁和眩光的影响可能意味着某些太阳能开发项目是不可接受的,但是布局修改(例如改变面板倾斜度、面板类型和仰角)通常可以缓解这些担忧并克服异议。尽早与机场当局协商的好处不容小觑。
摘要。雷达是跟踪目标的常用手段,在敌方主动干扰下,常常会导致目标失去跟踪,从而造成雷达失去对目标的连续跟踪。为提高跟踪效果,建立了一种基于雷达光电联动控制的多传感器协同探测目标跟踪方法。研究以雷达光电联动、恒速度(CV)、恒加速度(CA)和电流统计模型(CSM)作为运动目标的数学模型,针对不同运动状态下的目标,以及单传感器电子支援措施(ESM)和多传感器电子支援措施(ESM)、红外搜索与跟踪(IRST),对比了改进的交互式多模型(IMM)和标准IMM。研究结果表明,在变速运动中,采用改进的IMM算法和多传感器进行目标跟踪,目标的方位角和仰角跟踪误差较小,可以有效解决CV、CA等运动模式转换过程中模型失配的问题。方位角和俯仰角图像曲线波动较小,稳定性较高,该方法可以取得较好的跟踪效果。
摘要:本文介绍了一种基于估计的反步控制律设计,用于无人驾驶飞行器 (UAV) 跟踪 3-D 空间中的移动目标。地面传感器或机载导引头天线为追踪无人机提供距离、方位角和仰角测量,追踪无人机实施扩展卡尔曼滤波器 (EKF) 来估计目标的完整状态。然后,非线性控制器利用该估计的目标状态和追踪者的状态为追踪无人机提供速度、飞行路径和航向/航向角命令。针对三种情况评估与测量不确定性有关的追踪性能:(1) 平稳白噪声;(2) 平稳有色噪声和 (3) 非平稳(距离相关)白噪声。此外,为了提高跟踪性能,通过考虑测量中与范围相关的不确定性,使测量模型更加真实,即当追逐者接近目标时,EKF 中的测量不确定性会降低,从而为无人机提供更准确的控制命令。这些情况的仿真结果显示了目标状态估计和轨迹跟踪性能。
摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
图 4-6。A 示波器显示.................................................................................... 4-5 图 4-7。B 示波器显示.................................................................................... 4-5 图 4-8。RHI 示波器显示 ............................................................................. 4-6 图 4-9。PPI 示波器显示....................................................................................... 4-6 图 4-10。连续波雷达 ............................................................................. 4-7 图 4-11。基本 CW 多普勒雷达............................................................................. 4-8 图 4-12。CW 多普勒雷达显示 ............................................................................. 4-8 图 4-13。CW 和脉冲多普勒雷达比较.............................................................. 4-9 图 4-14。基本脉冲多普勒雷达图.............................................................. 4-10 图 4-15。单脉冲雷达............................................................................... 4-11 图 4-16。单脉冲 Magic T............................................................................. 4-11 图 4-17。Magic T 输出信号.................................................................... 4-12 图 4-18。单脉冲雷达轨迹.................................................................... 4-12 图 4-19。单脉冲雷达轨迹逻辑............................................................. 4-13 图 5-1。基本雷达脉冲 ................................................................................................ 5-1 图 5-2。雷达英里................................................................................................... 5-2 图 5-3。第二次回波.................................................................................... 5-3 图 5-4。雷达脉冲................................................................................................ 5-4 图 5-5。T1 处的雷达脉冲.................................................................................... 5-5 图 5-6。T2 处的雷达脉冲.................................................................................... 5-5 图 5-7。T3 处的雷达脉冲.................................................................................... 5-6 图 5-8。雷达距离分辨率................................................................................... 5-6 图 5-9。雷达波束宽度 ................................................................................................ 5-7 图 5-10。方位角确定...................................................................................... 5-8 图 5-11。天线扫描............................................................................................. 5-8 图 5-12。水平波束宽度比较............................................................................. 5-9 图 5-13。水平波束宽度和方位角分辨率............................................................. 5-10 图 5-14。方位角分辨率............................................................................. 5-10 图 5-15。垂直波束宽度和仰角分辨率............................................................. 5-11 图 5-16。仰角分辨率............................................................................. 5-12 图 5-17。雷达分辨率单元................................................................................ 5-13 图 5-18。雷达分辨率单元尺寸.................................................................... 5-13 图 5-19。脉冲调制....................................................................................... 5-14 图 5-20。脉冲调制波形的谐波....................................................................... 5-15 图 5-21。谐波含量....................................................................................... 5-15 图 5-22。谱线频率....................................................................................... 5-16 图 5-23。选择性杂波消除................................................................................. 5-16 图 5-24。PRF 和谱线..................................................................................... 5-17 图 5-25。脉冲多普勒滤波器................................................................................ 5-18 图 6-1。抛物面天线 ........................................................................................ 6-1 图 6-2。抛物面圆柱天线 ................................................................................ 6-2 图 6-3。测高抛物面天线 ............................................................................. 6-3 图 6-4。多馈电抛物面天线 ............................................................................. 6-3 图 6-5。卡塞格伦天线 ............................................................................................. 6-4 图 6-6。平板卡塞格伦天线 ............................................................................. 6-4 图 6-7。相控阵天线................................................................................ 6-5
更新了 ARA 的定义 36.5 GHz 信道 ARA 放宽至 0.75K,以与总不确定度计算 (MRD-240) 保持一致。MRD 中提供的总体不确定度计算定义 1-sigma 限制适用于稳定性要求 MRD-250、MRD-260、MRD-270 增加了关于极端海风中 L 波段测量操作使用的部分。更新了微波成像任务以包括 COWVR 任务。表 MRD-2 更新了 36.5 GHz 信道的新 ARA 值 0.75 K。完全修订了空间采样要求。MRD-190 和 MRD-200 进行了澄清和相应修改。添加了沿扫描和跨扫描定义 澄清了到海岸的距离定义 添加了瞬时视场 (IFOV) 定义 添加了仰角定义 添加了方位角定义 澄清了足迹和足迹椭圆的定义 添加了全波束定义 添加了旁瓣定义 澄清了宽波束效率定义
此设计旨在为客户提供具有成本优化物料清单的即用型小型毫米波车内雷达传感器。在此设计中,由 PMIC 导轨(3.3V、1.8V 和 1.2V)供电的 AWRL6432 设备无需多个 DC-DC 转换器,并使设计具有极小的外形尺寸。为此板设计的天线能够提供 120°(方位角)× 120°(仰角)视场、3.5GHz 带宽和 6 至 7dBi 峰值增益,并采用高性能 Rogers ® RO3003 ® 材料。此参考设计还采用了 TI 的低成本、小型、低功耗 Derby PMIC 和 CAN PHY。板载连接器(J1、J2 和 J3)引出各种通信外设(UART、RS232、SPI、CAN、LIN、JTAG、I2C、GPIO)、SOP、PWR 和 GND,包括一个专用的 10 针连接器 (J1),用于直接连接 LP-XDS110,从而简化了电路板的操作。设计中使用的板载连接器间距为 1.27 毫米,这也有助于减小电路板的整体尺寸。