图 18 场景 1 的成本图。成本 1 是已批准计划的成本,成本 2 是下一个考虑的计划的成本。可以看出,如果成本 2 值低于当前成本 1 值,则已批准计划不会改变。................................................................................ 54
5. 1 简介 89 5.2 资源管理和任务调度目标 91 5.3 静态阵列多功能雷达中的任务调度 92 5.3.1 背景 92 5.3.2 MESAR 算法 93 5.3.3 改进的 MESAR 算法 97 5.3.4 仿真架构 98 5.3.5 使用简单的双扇区监视系统进行调度 100 5.3.6 使用 MESAR 监视体积进行调度 104 5.3.7 使用 MESAR 调度程序进行绘图确认延迟 109 5.4 旋转阵列多功能雷达中的任务调度 110 5.4.1 背景 110 5.4.2 旋转多功能雷达系统的任务调度算法 114 5.4.3 旋转多功能雷达的波束搜索模式 118 5.4.4 旋转多功能雷达任务调度算法的结果 119 5.4.5 旋转多功能雷达的其他资源管理问题 123 5.5 用于高效调度的惩罚函数和模糊逻辑 124 5.5.1 模糊逻辑的使用 125 5.6 结论 126
24 20203CSE0003 SARAVANAN M 使用混合优化和深度学习技术在云环境中进行动态可扩展任务调度、负载平衡和资源分配的容器管理策略。
摘要:物联网 (IoT) 的迅猛发展产生了大量的近距和遥感数据,随着可持续环境新解决方案的出现,这些数据还在不断增加。云计算通常用于帮助资源受限的物联网传感设备。然而,云服务器位于核心网络深处,距离物联网很远,引入了大量数据交易。这些交易需要大量电力消耗,并向环境释放有害的二氧化碳。一种位于网络边缘的分布式计算环境,即雾计算,已被推广,以减少云计算对物联网应用的限制。雾计算可以处理实时和延迟敏感的数据,并减少流量,从而最大限度地降低能耗。通过实施节能任务调度,可以减少额外的能耗,该调度根据最小完成时间、成本和能耗来决定在云或雾节点上执行任务。本文提出了一种称为节能完工成本感知调度 (EMCS) 的算法,该算法使用进化策略来优化执行时间、成本和能耗。通过大量模拟对本文工作的性能进行了评估。结果表明,在完工时间方面,EMCS 比成本完工感知调度 (CMaS) 好 67.1%,比异构最早完成时间 (HEFT) 好 58.79%,比蜜蜂生命算法 (BLA) 好 54.68%,比进化任务调度 (ETS) 好 47.81%。比较 EMCS 模型的成本,其成本比 CMaS 低 62.4%,比 BLA 低 26.41%,比 ETS 低 6.7%。在比较能耗时,EMCS 的能耗比 CMaS 低 11.55%,比 BLA 低 4.75%,比 ETS 低 3.19%。结果还表明,随着雾节点和云节点数量的增加,云节点和雾节点之间的平衡在完工时间、成本和能耗方面提供了更好的性能。
摘要 考虑到数据中心在世界各地的分布及其巨大的能源消耗,一些研究人员专注于任务调度和资源分配问题,以尽量减少数据中心的能源消耗。其他举措则侧重于实施绿色能源,以尽量减少化石燃料的消耗和二氧化碳排放。作为 ANR DATAZERO 项目 [ 34 ] 的一部分,一些研究团队旨在定义完全绿色数据中心的主要概念,该数据中心仅由可再生能源供电。为了实现这一目标,必须注重高效管理由太阳能电池板、风力涡轮机、电池和燃料电池系统组成的自主混合动力系统。这项工作的目的不是证明独立的数据中心在经济上可行,而是证明其可行性。本文提出了一组基于混合整数线性规划的模型,该模型能够管理能源承诺,以满足数据中心的电力需求。该方法在优化时会考虑季节和天气预报。
摘要:有效的,可扩展的和成本效益的资源管理是一个多方面的在线决策问题,在网络和云计算方面越来越面临。更具体地,任务安排是一个复杂的挑战,解决了当今系统的最佳功能至关重要。调度的传统启发式方法在设计上很费力,尤其是很难调节,因此已经提出了各种基于机器的方法。强化学习(RL)在类似的决策问题中显示出很大的结果,许多现有方法采用RL来解决任务调度问题。这些作品中的大多数都考虑了单一代理的方案(因此遭受可伸缩性问题),或者现有的多代理应用程序非常专业。我们提出了一个通用多代理RL框架,该框架可以成功地学习协作最佳的调度策略,从而向既可以扩展又自主的云和网络迈出一步。我们的实验表明,这些代理可以协作学习动态工作负载的最佳调度策略。
X 射线源:AlKα(1.48keV),单色光斑尺寸:直径约 200μm 分析时压力:10-8mbar 至 25mbar 分析时温度:最高 1000℃ 可插入最大尺寸为 40mm(宽)x 40mm(长)x 40mm(高)的单个样品 可插入最大尺寸为 10mm(宽)x 10mm(长)x 40mm(高)的多个样品 可插入最大尺寸为 10mm(宽)x 10mm(长)x 5mm(高)的空气和湿度敏感样品 三个摄像头用于实时观察样品 惰性/反应剂:N2、Ar、H2、O2、CO、CO2、H2O 快速样品加载程序 使用氩离子溅射进行表面铣削,可进行深度剖析 用于空气或湿度敏感样品的惰性样品转移系统 用于设置测量位置和时间的半自动系统条件和任务调度
摘要 — 本文研究了一种无人机 (UAV) 辅助移动边缘计算 (MEC) 系统,其中 UAV 为地面 MEC 系统提供补充计算资源。UAV 通过创建相应的虚拟机来处理从移动用户 (MU) 接收的计算任务。由于 MEC 系统中 UAV 的共享 I/O 资源有限,每个 MU 都会在决策时期内竞争安排本地和远程任务计算,旨在最大化预期的长期计算性能。MU 之间的非合作交互被建模为随机博弈,其中 MU 的决策取决于全局状态统计数据,并且所有 MU 的任务调度策略是耦合的。为了近似纳什均衡解,我们提出了一种基于长短期记忆和深度强化学习 (DRL) 技术的主动方案。建立 MEC 系统的数字孪生,以离线训练主动 DRL 方案。使用所提出的方案,每个 MU 仅使用自己的信息进行任务调度决策。数值实验表明,该方案在决策时期内每个 MU 的平均效用方面具有显着的性能提升。
越来越多的物联网(IoT)设备的使用会产生对数据传输的更大需求,并给网络带来了增加的压力。此外,与云服务的连接性可能是昂贵且效率低下的。雾计算提供与用户设备接近的资源,以克服这些缺点。但是,在物联网应用程序中的服务质量(QoS)和雾资资源管理的优化正变得具有挑战性。本文介绍了需要执行延迟敏感任务的车辆流量应用程序中的动态在线卸载方案。本文提出了两种算法的组合:动态任务调度(DTS)和动态能量控制(DEC),旨在最大程度地减少整体延迟,增强用户任务的吞吐量并最大程度地减少雾层的能量消耗,同时最大程度地利用资源约束的雾气节点的使用。与其他方案相比,我们的实验结果表明,这些算法可以将延迟减少高达80.79%,并将雾节点的延迟减少高达66.39%。此外,此方法将任务执行吞吐量提高了40.88%。