非厄米趋肤效应 (NHSE) 是非平衡系统中一种令人着迷的现象,其中本征态大量局限于系统边界,将系统中加载的(准)粒子单向泵送到边界。最近,它与多体效应的相互作用得到了广泛的探索,并且已经证明粒子间排斥或费米简并压力会限制 NHSE 在其本征解和动力学中引起的边界积累。然而,在这项工作中,我们发现任意子统计数据可以更深远地影响 NHSE 动力学,抑制甚至逆转状态动力学朝着 NHSE 的局部方向。当涉及更多粒子时,这种现象更加明显。该系统中量子信息的传播显示出更加奇特的现象,其中 NHSE 仅影响热集合的信息动力学,而不会影响单个初始状态。我们的研究结果为探索由 NHSE 与任意子统计之间的相互作用引起的新型非厄米现象开辟了一条新途径,并有可能在超冷原子量子模拟器和量子计算机中得到证明。
●研究概要 量子比特是量子计算机的物理组成部分,当它与环境相互作用时,量子信息就会丢失,从而导致计算错误。纠错的困难一直是量子计算机发展的瓶颈。拓扑量子计算在原理上具有容错性,被广泛认为是一种克服这一问题的技术。实现拓扑量子计算的起点是操纵被称为任意子的准粒子(基本激发)的运动。三维空间中的粒子分为玻色子或费米子。另一方面,违背这一传统观念的准粒子(任意子)可能存在于二维电子系统中。当一个任意子绕着另一个任意子往返时,系统的初始状态和最终状态在量子力学上是不同的;这种操作称为“编织”。拓扑量子计算机使用这些不同的状态作为量子信息。该项目研究分数量子霍尔态中任意子的按需编织动态控制,为实现拓扑量子计算机铺平道路。
由量子力学定律支配计算的计算机概念通常最早归功于费曼 [10]。一般而言,量子计算机能够在某些类别的问题上胜过传统计算机,这是通过大幅减少解决特定问题所需的计算次数来实现的。这通常是通过利用物理系统中量子比特之间的量子纠缠来实现的,使得量子计算机中的每个计算操作能够执行相当于多个经典操作的操作。然而,构建量子计算机的主要困难之一是缓解和处理错误要困难得多。量子计算机通常只有在能够利用量子比特状态叠加时才比传统计算机更具优势。如果量子算法中没有任何量子比特通过任何操作或初始化进入状态叠加,则该算法通常可以等效地以经典方式执行。因此,量子计算机的物理实现需要处理退相干,因为这可能会以意想不到的方式使波函数崩溃,从而在计算中引入意外的错误。