Loading...
机构名称:
¥ 5.0

量子计算机的运行速度比传统计算机快得多。它基于叠加原理工作。但由于退相干效应,量子态的叠加会因与环境的相互作用而遭到破坏。完全隔离一个量子系统以使其摆脱退相干是一个真正的挑战。这个问题可以通过使用物质的拓扑量子相来规避。这些相具有称为任意子的准粒子激发。任意子是电荷通量复合材料,表现出奇异的分数统计特性。当交换顺序很重要时,任意子被称为非阿贝尔任意子。拓扑超导体中的马约拉纳费米子和某些量子霍尔态中的准粒子是非阿贝尔任意子。这种物质的拓扑相具有基态简并性。两个或多个非阿贝尔任意子的融合可以导致多个任意子的叠加。拓扑量子门是通过非阿贝尔任意子的编织和融合来实现的。容错是通过任意子的拓扑自由度来实现的。这种自由度是非局部的,因此无法受到局部扰动的影响。本文讨论了拓扑量子比特的希尔伯特空间。简要给出了二元门的 Ising 和斐波那契任意子模型。三元逻辑门比二元逻辑门更紧凑,自然出现在一种称为元任意子的任意子模型中。元任意子的融合和编织矩阵的数学模型是重耦合理论的量子变形。我们提出,现有的量子三元算术门可以通过元任意子的编织和拓扑电荷测量来实现。

拓扑量子计算中的三元逻辑设计

拓扑量子计算中的三元逻辑设计PDF文件第1页

拓扑量子计算中的三元逻辑设计PDF文件第2页

拓扑量子计算中的三元逻辑设计PDF文件第3页

拓扑量子计算中的三元逻辑设计PDF文件第4页

拓扑量子计算中的三元逻辑设计PDF文件第5页

相关文件推荐

2020 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2020 年
¥2.0
2020 年
¥5.0
2021 年
¥2.0
2022 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2024 年
¥5.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥3.0
2022 年
¥2.0
2022 年
¥3.0
2021 年
¥9.0
2023 年
¥1.0
2022 年
¥8.0
2023 年
¥3.0
2023 年
¥1.0
2023 年
¥1.0
2023 年
¥3.0
2023 年
¥2.0
2023 年
¥1.0
2022 年
¥3.0
2024 年
¥6.0
2023 年
¥3.0
2023 年
¥1.0
2024 年
¥4.0
2023 年
¥1.0