我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
具有不寻常的电磁正确性的结构化材料在几种易流动作品1 - 4后引起了显着的关注,这表明,通过调整常规金属的微观结构和介电的微观结构,可以在此类媒体中从根本上改变光的传播。显着的效果,例如负折射,5,6个亚波长度成像,7,8披肩,9,10和通过无损的替代棱镜的调色板的反转,理论上预测了11个,在某些情况下进行了预测。某种程度上类似于常规的晶体材料,超材料通常由许多相同的夹杂物组成,这些夹杂物在常规晶格中排列。包含物的尺寸比辐射的波长小得多。在最简单的情况下,在最简单的情况下,仅使用少数有效的参数来实现电磁波传播的特征,可以通过使用均质化技术来简化这种复杂系统的研究,从而实现了电磁波传播的特征:有效的介电性和有效的渗透性。的确,超材料的一个重要特征是它们的磁反应可能非常强,尽管材料的基本成分通常是较大的或介电颗粒具有内在的磁性特性。1这种人工磁性是由夹杂物中引起的电流的沃克斯部分诱导的,在某些情况下,该部分可能非常接近对真正磁性粒子的反应。12
1) 写出任意两个自然事物的名称。 答案:月亮和太阳 2) 写出机器的两个好处。 答案:使我们的工作变得轻松并节省时间 3) 写出计算机的任意两个特点。 答案:永远不会感到疲倦和无聊并节省时间 4) 写出你用于聊天的任意两个程序的名称。 答案:Whatsapp 和微信 5) 写出你在电脑上玩的任意两个游戏的名称。 答案:超级马里奥和纸牌 6) 写出任意两个输入设备。 答案:键盘和鼠标
我们提出了一种硬件架构和协议,用于连接光学腔内的许多局部量子处理器。该方案与捕获离子或里德堡阵列兼容,并通过在腔内进行单光子传输来分配纠缠,从而实现任意两个量子比特之间的传送门。即使对于中等质量的腔,Heralding 也能实现高保真度纠缠。对于由线性链中的捕获离子组成的处理器,具有实际参数的单个腔每隔几 μs 就能成功传输光子,将链间纠缠速率提高到现有方法的 2 个数量级以上,并消除了扩展捕获离子系统的主要瓶颈。对于一个现实场景,我们概述了如何在 200 μs 内实现 20 条离子链(总共包含 500 个量子比特)的任意对任意纠缠,保真度和速率仅受局部操作和离子读出的限制。对于由里德堡原子组成的处理器,我们的方法可以完全连接数千个中性原子。我们的架构所提供的连接性可使用多个重叠腔扩展到数万个量子比特,从而扩展嘈杂的中尺度量子时代算法和汉密尔顿模拟的能力,并实现更强大的高维纠错方案。
高斯状态和测量值加在一起不足以成为量子计算的强大资源,因为任何高斯动力学都可以用经典方法高效模拟。然而,众所周知,任何一种非高斯资源(状态、幺正运算或测量)与高斯幺正值一起构成通用量子资源。光子数分辨 (PNR) 检测是一种易于实现的非高斯测量,已成为尝试设计非高斯状态以进行通用量子处理的常用工具。在本文中,我们考虑对零均值纯多模高斯状态的子集进行 PNR 检测,以此作为在未检测到的模式上预示目标非高斯状态的一种手段。这是因为使用压缩真空和被动线性光学系统可以轻松可扩展地制备具有零均值的高斯状态。我们计算了实际预示状态和目标状态之间的保真度上限。我们发现,当目标状态是多模相干猫基簇状态时,该保真度上限为 1/2,这对于通用量子计算来说是一种足够的资源。这证明了存在无法通过此方法产生的非高斯状态。我们的保真度上限是一个简单的表达式,仅取决于光子数基中表示的目标状态,它可以应用于其他感兴趣的非高斯状态。
背景:基因组步行为与生活有关的科学相关地区做出了贡献。在此,我们详细介绍了一种新的基因组步行方法,被提名为任意后缀序列特异性引物PCR(ASP-PCR)。目标:本研究旨在构建一种有效的基于PCR的基因组步行方法。材料和方法:此方法的关键是在初级ASP-PCR中使用混合引物(HP)。该HP是通过将任意序列与最序列特异性引物的后缀构成的。初级ASP-PCR中的松弛周期有助于HP向基因组进行部分退火,从而产生许多单链DNA。在下一个严格的周期中,目标单链被指数放大,因为它也具有与HP的序列特异性部分互补的位点;由于缺乏这样的网站,因此无法进一步处理非目标。嵌套的二级/第三级ASP-PCR进一步选择性地富集了目标DNA。结果:通过获得与Oryza sativa hygromycin基因相邻的未知DNA和Brevis Brevis CD0817 L-谷氨酸脱羧酶基因相邻的未知DNA,可以证实ASP-PCR的实用性。结果表明,每个次级或第三级ASP-PCR表现出1 - 2个透明靶标扩增子,大小为1.5至3.5 kb,背景较弱。结论:ASP-PCR是一个有前途的基因组步行计划,可能在与生命有关的科学相关领域中有潜在的使用。
图:从均匀分布 U [ 0.05, 1.95 ] 中绘制的捐赠概况,其比例因子较难直观显示,但这种分布将包括任意富裕和任意贫困的家庭。捐赠基尼系数约为 35%。
只要有一个可以区分非正交量子态 | ψ ⟩ 、| ϕ ⟩ (无需测量)的设备,我们就可以设计一个量子电路,将 | ψ ⟩7→| ϕ ⟩ 映射(反之亦然),从而让我们可以随意克隆这些状态。相反,只要有一个克隆设备,我们就可以任意次数地克隆 | ψ ⟩ 和 | ϕ ⟩。然后,在不同的测量基中对这两个状态进行重复测量,我们(在有足够的测量值的情况下)就能够根据测量统计数据区分这两个状态(当然,基于概率考虑会有一些误差 ϵ,但只要我们可以对状态进行任意多次测量,我们就可以任意降低这个误差)。