仿生工程方向旨在培养机械工程师具备跨学科和多学科技能,能够构思和设计受生物启发的创新系统,并可持续地利用现有资源。这些技能对于应对未来几十年全球人口将面临的重大技术和社会挑战至关重要且独一无二。该课程的学生必须选修六门跨学科核心课程,为攻读硕士级机械工程学位做准备,然后学习一门将工程生物学基础与仿生设计一般原理相结合的入门课程。随后,学生可以从该方向的特色课程中选择两门,例如仿生系统的测量工具、软机器人、增材制造和仿生结构设计。最后,他们可以从更广泛的课程中选择五门选修课程,深入研究更感兴趣的主题,从材料到可持续性,从群体智能到拓扑优化。
CSB 的跨学科仿生视觉实验室正肩负着一项使命。他们的目标是什么?揭示仿生技术背后的科学原理,以便有朝一日为无法治愈的失明患者恢复有用的视力。“一种想法是在眼睛或大脑中植入芯片,并用电流刺激幸存的神经元,”实验室首席研究员、助理教授迈克尔·贝耶勒解释说。“如果这样做,其他神经元就无法分辨它们是被电极人工激活的还是自然激活的。”虽然该领域尚处于起步阶段,但此类假体设备已经存在。它们被称为“仿生眼”。贝耶勒的兴趣在于将它们提升到一个新的水平并开发智能仿生眼。在目前的状态下,这些设备的用户所看到的基本上是闪光。“这就是人们所描述的,”贝耶勒说。“就像看烟花一样。
大自然已经创造出了性能和机制远远超出工程材料行业现有知识的材料。生物材料卓越的效率,例如其依赖于弱成分的卓越性能、单位质量的高性能以及除机械性能之外的多种功能,主要归因于其层次结构。仿生材料的关键策略包括形成作为灵感的生物材料的基本理解,将这种基本理解与工程需求/问题联系起来,并制造具有相应增强性能的层次结构材料。现有的大量关于生物和仿生材料的文献可以从功能和机械方面进行讨论。通过基本的代表性特性和材料,仿生材料的开发利用生物系统的设计策略,以创新的方式增强材料性能,以用于各种实际应用,例如海洋、航空航天、医疗和土木工程。尽管目前面临挑战,但仿生材料已成为促进现代材料行业创新和突破的重要组成部分。
微针以其无痛、无创、高效的药物输送方式引起了各医学领域越来越多的关注。然而,这些微针在不同表皮位置和环境中的实际应用仍然受到其低粘附性和较差的抗菌活性的限制。在这里,我们受到多粘芽孢杆菌的抗菌策略以及贻贝足丝和章鱼触手的粘附机制的启发,开发了具有多功能粘附和抗菌能力的分级微针。以聚多巴胺水凝胶为微针基底,每个微针周围环绕着一圈吸盘结构凹腔,所生成的微针可以很好地贴合皮肤;在干燥、潮湿和潮湿的环境中保持强粘附性;并在分成两部分后实现自我修复。此外,由于水凝胶尖端和聚多巴胺基质中都载有多粘菌素,微针在储存和使用过程中具有出色的抗常见细菌能力。我们已经证明这些微针不仅在应用于指关节时表现出优异的粘附性和理想的抗菌活性,而且在骨关节炎大鼠模型中药物缓释和治疗方面也表现出色。这些结果表明,仿生多功能微针将突破传统方法的限制,成为多功能透皮给药系统的理想候选者。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。
透皮给药对于提高治疗效果和患者依从性具有巨大前景,而仿生 4D 微针代表了该领域的一种前沿方法。本综述简要概述了仿生 4D 透皮微针在药物输送方面的当前进展和未来前景。仿生 4D 微针结合了仿生学和先进材料科学的原理,创造了动态、响应迅速的药物输送系统。它们旨在通过提供增强的药物释放控制、改善患者的舒适度以及适应皮肤动态特性的能力来克服传统透皮贴剂的局限性。在本文中,我们讨论了为制造这些创新微针而探索的各种制造技术、材料和设计。本文探讨了创新微针的各种制造技术、材料和设计。该领域的当前研究表明,仿生 4D 微针能够为广泛的治疗应用提供精确和可控的药物给药。这些微针在输送小分子药物和生物制剂方面表现出潜力,使其成为制药行业的多功能工具。正在进行的研究工作重点是提高生物相容性、可扩展性和商业可行性。与传感器和反馈控制系统等智能技术的集成实现了个性化和响应式药物输送。仿生 4D 透皮微针代表了一种变革性的药物输送方法。它们为提供各种治疗方案提供了精确、患者友好且适应性强的解决方案。随着持续的研究和开发,仿生 4D 微针有可能彻底改变药物给药方式,最终改善患者的医疗保健。
功能障碍综合征 (MODS)。[2] 在脓毒症发病机制中,炎症失调通常由 Toll 样受体 (TLR) 过度激活引发和驱动,TLR 会结合病原体相关分子模式 (PAMP) 或损伤相关分子模式 (DAMP)。[3] TLR 激活细胞内转录因子 NF- κ B,诱导促炎细胞因子(如干扰素-α、白细胞介素-6 [IL-6]、IL-8 和肿瘤坏死因子-α [TNF-α])、促凝剂和粘附分子的产生和释放,这些因子的异常产生会引发细胞因子风暴。[4,5] 反过来,细胞因子风暴会对内皮和上皮造成不可逆的损伤以及免疫细胞衰竭,最终导致器官衰竭。 [6]因此,抑制免疫过度激活是治疗脓毒症的重要策略。流行病学调查显示,实体肿瘤患者脓毒症的发生率普遍较低,不同癌症亚型的脓毒症发生率也存在很大差异,黑色素瘤患者的脓毒症发生率尤其降低,这可能与神经内分泌肿瘤的防御机制有关。[7–9]我们的初步研究结果显示,与正常小鼠相比,实验性荷瘤动物(黑色素瘤B16-F10)
在4T1肿瘤细胞中,CF和RF的溶血跟踪器绿色FM(蓝色)和DIL(红色)共定位。(b)使用ImageJ软件确定的(a)的DIL荧光强度。(c)JC-1(JC-1单体绿色,在不同处理下用于JC-1的荧光图像红色。(d)使用DAPI和-H2AX染色在所示的细胞中使用DAPI和-H2AX染色可视化核凝结和DNA碎片,并显示了代表性的图片。(e)基于每个处理组100个细胞(γ-H2AX焦点/100μm2,n = 3)的分析,确定了γ-H2AX灶的密度。(f)使用用2或6 Gy辐射处理的4T1细胞(n = 3)进行了菌落形成测定。(g)PMSI对细胞内的影响
本文介绍了一种基于生物榜样设计 4D 打印自成形材料系统的材料编程方法。植物启发了许多自适应系统,这些系统无需使用任何操作能量即可移动;然而,这些系统通常以简化的双层形式设计和制造。这项工作介绍了用于 4D 打印具有复合机制的仿生行为的计算设计方法。为了模拟运动植物结构的各向异性排列,使用基于挤压的 3D 打印在中观尺度上定制材料系统。该方法通过将缠绕植物(Dioscorea bulbifera)的力产生原理转移到自紧夹板的应用来展示。通过张紧其茎螺旋,D. bulbifera 对其支撑物施加挤压力,以提供对抗重力的稳定性。D. bulbifera 的功能策略被抽象并转化为定制的 4D 打印材料系统。然后评估这些仿生运动机制的挤压力。最后,在腕前臂夹板(一种常见的矫正装置)中对自紧功能进行了原型设计。所提出的方法可以将新颖且扩展的仿生设计策略转移到 4D 打印运动机制中,从而进一步为可穿戴辅助技术及其他领域的新型自适应创作打开设计空间。
电弧增材制造零件性能的提升依赖于结构创新和定制打印,自然优化的结构可以为设计制造提供灵感。本文以Crysomalon squamiferum壳的生物结构为灵感,采用多丝电弧增材制造(MWAAM)技术设计并制备了层状TC4/Nb多材料合金零件。利用EDS、SEM、EBSD和力学性能试验机研究了MWAAM加工仿生异质TC4/Nb多材料合金零件的界面反应、相组成、微观组织演变、晶体生长、力学性能和裂纹扩展。结果表明,MWAAM TC4/Nb多材料合金试样不同层间形成了良好的冶金结合;Ti/Nb多材料合金零件主要由α-Ti、β-Ti和(Nb,Ti)固溶体相组成。随着Nb含量的增加,从TC4层到G1层,相形貌经历了一个连续的转变过程:片层状α+β→细片层状α+短棒状α+β→针状α+β→细针状α+β。此外,随着Nb含量的增加,TC4/Nb多材料合金组分从TC4层到G2层的晶粒尺寸由3.534μm逐渐减小到2.904μm。TC4/Nb多材料合金从TC4层到G2层的显微硬度范围为404.04~245.23HV。TC4/Nb多材料合金试样具有较高的压缩强度和极限拉伸强度分别为2162.64±26MPa和663.39MPa,对应的应变量分别为31.99%和17.77%。优异的力学行为主要归因于层间晶粒尺寸的梯度转变和组织演变的良好结合;拉伸试验过程中裂纹扩展主要以裂纹偏转和多级开裂为主;TC4/Nb多材料合金构件中TC4层的强度高于G1层和G2层。