gebeshuber@iap.tuwien.ac.at(2)奥地利维也纳奥地利科学学院技术评估研究所,该邀请的讲座探讨了生物启发和生物模拟纳米材料,与生物启发或生物含量的纳米技术和Biomimimimimicechnotechnolology and Biimimimatimetic nanotechnolology and Biimimimicethology and Biimimimatimentials差异化。 在澄清了这些术语后,提出了生物启发和仿生纳米材料的基础知识。 随后,根据制造方法而不是基于材料的功能,给出了生物启发和仿生纳米材料的合成方法的系统分类。 这使其与安全方面有更连贯的相关性,在许多情况下尚待定义。 由于种类繁多,根据材料特性或材料组成的分类不可行。 除了化学特性外,诸如大小,结构和表面质量之类的物理参数在分类中起着重要作用。 总而言之,可以说,生物启发和仿生的纳米材料代表重要的基本材料作为研究,开发和行业中所谓的功能高级材料,但前提是材料开发伴随着相应的安全性和面向可持续性的技术评估。gebeshuber@iap.tuwien.ac.at(2)奥地利维也纳奥地利科学学院技术评估研究所,该邀请的讲座探讨了生物启发和生物模拟纳米材料,与生物启发或生物含量的纳米技术和Biomimimimimicechnotechnolology and Biimimimatimetic nanotechnolology and Biimimimicethology and Biimimimatimentials差异化。在澄清了这些术语后,提出了生物启发和仿生纳米材料的基础知识。随后,根据制造方法而不是基于材料的功能,给出了生物启发和仿生纳米材料的合成方法的系统分类。这使其与安全方面有更连贯的相关性,在许多情况下尚待定义。由于种类繁多,根据材料特性或材料组成的分类不可行。除了化学特性外,诸如大小,结构和表面质量之类的物理参数在分类中起着重要作用。总而言之,可以说,生物启发和仿生的纳米材料代表重要的基本材料作为研究,开发和行业中所谓的功能高级材料,但前提是材料开发伴随着相应的安全性和面向可持续性的技术评估。
嵌段共聚物“呼吸图”模板中的定向自组装,然后进行软水解-缩合:迈向合成仿生二氧化硅硅藻外骨骼的一步 Antoine Aynard, a,b Laurence Pessoni, a,b Laurent Billon a,b * a Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 64000, PAU, France b 仿生材料组:功能与自组装,E2S UPPA, Helioparc, 2 avenue Angot, 64053, PAU, France。 *通讯作者。电子邮件地址:laurent.billon@univ-pau.fr 关键词:自组装、呼吸图、自下而上的过程、溶胶-凝胶、仿生材料摘要
类风湿关节炎(RA)是一种慢性全身自身免疫性疾病,主要以滑膜炎为特征,导致关节软骨和骨骼的破坏,最终导致关节畸形,功能丧失以及对患者生活质量的重大影响。目前,抗毒药,激素药物和生物制剂的结合用于减轻疾病进展。然而,常规药物治疗的生物利用度有限,长期使用通常会导致耐药性和有毒副作用。因此,探索RA的新治疗方法至关重要。纳米果输送系统提供有希望的解决方案来克服常规药物的局限性。其中,脂质体是批准用于临床应用并仍被广泛研究的第一个纳米果输送系统,证明了通过被动或主动靶向机制提高治疗功效,并较少的不良反应能力提高治疗功效的能力。在这篇综述中,我们对RA治疗中各种天然仿生纳米递送系统的靶向机制的研究进度进行了综述。此外,我们预测了这些系统的发展趋势和应用前景,为RA的精确处理提供了新的方向。
生物生物体中的触感是一种依赖各种专业受体的教师。这项研究中介绍的双峰传感皮肤,结合了将皮肤归因于机械和热感受器功能的软电阻复合材料。模仿不同自然受体在皮肤层的不同深度中的位置,可以实现软电阻式组合的多层布置。然而,信号响应的大小和刺激的定位能力随双峰皮肤的较轻压力而变化。因此,采用了一种基于学习的方法,可以帮助您对4500探针的刺激进行预测。类似于人脑中的认知功能,两种类型的感觉信息之间的感觉信息的串扰使学习体系结构可以更准确地预测刺激的定位,深度和温度。使用8机械感受器和8个热感应感应元素的定位精度为0.22 mm,温度误差为8.2°C,对于较小的元素间距离实现了。将双模态感测多层皮肤与神经网络学习方法结合起来,使人造触觉界面更接近地模仿生物皮肤的感觉能力。
摘要 迄今为止,纳米粒子 (NP) 已被广泛用于治疗癌症。它们被归类为高效的药物输送系统,因为它们具有出色的性能和设计灵活性,使其具有高度的针对性和安全性。然而,纳米粒子仍然面临着生物稳定性、非特异性、被识别为外来物质和快速清除方面的挑战,这限制了它们在临床上的应用。为了克服这些缺点,提出了先进的仿生纳米技术,使用 T 细胞膜包被的 NP 作为优越的药物输送系统,这可以增加它们的循环时间并防止免疫系统快速从体内清除。免疫 T 细胞具有特定的表面蛋白,可在膜提取和包被过程中将独特的功能转移到仿生 NP。T 细胞表面的此类蛋白质为纳米粒子提供了各种优势,包括延长循环、增加药物靶向范围、控制释放、特定的细胞相互作用和有限的体内毒性。本综述讨论了基于 T 细胞膜的仿生纳米系统、其详细的提取工艺、制造、涂覆 NP 以及这些仿生系统在癌症治疗中的适用性。此外,还介绍了其临床转化的最新应用、未来前景和当前挑战。关键词:癌症治疗、T 细胞修饰纳米粒子、T 细胞膜涂层、特洛伊木马纳米粒子
摘要:在过去的几十年中,由于药物在治疗物质的生物利用度、吸收率和药代动力学中起着至关重要的作用,寻找更有效、更具选择性的给药途径引起了人们的极大关注。肺部给药已成为医疗保健研究领域科学和生物医学研究的一个有吸引力的目标,因为肺部由于其高渗透性和大的吸收表面积以及良好的血液供应,能够吸收药物进行局部沉积或全身给药。然而,肺部药物输送相对复杂,需要采取一些策略来减轻机械、化学和免疫屏障的影响。在此,工程红细胞,即红细胞-磁-血凝素 (HA)-病毒体 (EMHV),被用作一种有效向肺部输送药物的新策略。 EMHV 生物基载体利用磁性纳米粒子的物理特性,在外部磁场的作用下,静脉注射后实现有效靶向。此外,EMHV 膜上存在血凝素融合蛋白,使 DDS 能够锚定并与目标组织融合,并局部释放治疗化合物。我们对 EMHV 的生物力学和生物物理特性(例如膜的坚固性和可变形性以及高磁化率)及其体内生物分布的研究结果突出表明,这种生物启发式 DDS 是一种有前途的药物控制和肺部靶向输送平台,并且是满足未满足的临床需求的吸入疗法的宝贵替代方案。
摘要 — 诱导针对人类免疫缺陷病毒 (HIV) 的广谱中和抗体 (bnAbs) 的疫苗将有助于控制该疾病。膜近端外部区域 (MPER) 肽是一种有吸引力的抗原候选物,因为它是保守的并且是几种人类 bnAbs 的靶标,例如 2F5。我们之前发现含有钴卟啉磷脂 (CoPoP) 的脂质体可以与带有 his 标记的 MPER 肽结合,从而在脂质双层上产生仿生抗原呈递。本研究生成了各种带有 his 标记的合成 MPER 片段,这些片段与含有 CoPoP 和合成单磷酰脂质 A (MPLA) 的脂质体结合,并评估了小鼠的免疫原性。与较短的 MPER 肽相比,氨基酸片段源自膜插入点且长度至少为 25 个氨基酸的 MPER 肽具有更高的 2F5 反应性并诱导更强的抗体反应。与 Alum 和 Montanide 佐剂相比,用脂质呈递的 MPER 免疫可引发更强的抗体反应,后者可识别含有 MPER 序列的重组 gp41 和 gp140 蛋白。诱导的抗体可中和对中和抗体 (W61D(TCLA)0.71) 敏感的 1A 级病毒,但不能中和另一级 1A 级或 2 级毒株。MPER 肽与无关疟疾蛋白抗原 (Pfs25) 共同配制,该抗原与含有 CoPoP 和 MPLA 的脂质体有效佐剂结合,可引发更高的 MPER 抗体水平,但不会改善中和,可能是由于干扰了膜中正确的肽呈递。产生了产生 MPER 抗体的鼠杂交瘤,但它们是非中和性的。这些结果并不
3。N. Dushkina,A。Lakhtakia,《仿生与生物启示》(国际光学和光子学会,2009年),第7401页,第7401页。 740106。
随着先进技术的出现,近几十年来,修复牙科领域发生了许多变化。仿生材料具有生物相容性和出色的物理化学性质,已证明能够克服上一代材料的一些重大局限性。它们可以用作持久的美观和修复材料、水泥、根修复材料、根管封闭剂、填充和再生材料,与其他同类材料相比,具有出色的生物相容性、高强度、密封能力和抗菌性能。因此,它们的应用已变得不可或缺。本文回顾了从过去到未来的各种仿生材料及其在儿童修复牙科和牙髓病学领域的生物学特性。
深度学习推动从学习仿生手臂到预测急诊室患者人数的突破:一切皆有可能。许多深度学习专家认为医疗保健是人工智能最有前景的领域之一,具有无数可能的应用。例如,在阿尔伯塔大学,研究人员正在测试一种实验性的仿生手臂,它使用机器学习来适应和预测截肢者的动作。而在多伦多的汉伯河医院,强大的计算机现在可以处理和分析整个医院的数据(入院、等候时间、转院、出院等),以准确预测患者人数、等候时间和急诊室的瓶颈——提前两天。