新一代高级板载处理器(OBP)依靠光学互连(OI)在电信卫星内快速有效地传输数据。与电气线束相比,光纤提供的质量和体积显着减少了质量和体积。后者通过ESCC3409 / 001标准[1]达到了空间标准化,该标准指定了以10 GB / s数据速率运行的太空纤维有线链接,通过2.5 mm直径的微波电缆,重量为17克 /米,并表现出2.2 db / m损失。另一方面,OI已经达到了TRL 9,并且由于使用了轻巧的色带光纤电缆和坚固的密度多重多花体连接器[2],因此它们可以在质量和数量消耗中为同轴电缆节省> 90%,而能够支持更高的数据率。oi最近通过启动Eutelsat Konnect VHT在商业任务中首次亮相,该公司主持Thales Alenia Space DTP5G OBP [3] - 一种处理器,该处理器的数字光链路以10 GB/s数据车道运行,以用于板到板互连。为了进一步促进卫星内OI的部署,ESA发布了ECSS-E-ST-50-11C标准[4],该标准[4]指定了以6.25至10 GB/s的数据信号传导速率运行的SpaceFibre光学链路,其系统需求范围为6.25至10 GB/s,该系统需求扩展了25 GB/s。
糖尿病性肾病(DN)是美国终末期肾脏疾病(ESRD)的主要原因。dn是根据肾小球形态分级的,在肾脏活检中具有空间异质表现,使病理学家对疾病进展的预测变得复杂。病理学的人工智能和深度学习方法已显示出对定量病理评估和临床轨迹估计的有望。但是,他们通常无法捕获大规模的空间解剖结构,并且在整个幻灯片图像(WSIS)中发现的关系。在这项研究中,我们提出了一个基于变压器的多阶段ESRD预测框架,建立在非线性维度降低,每对可强化的肾小球之间的相对欧几西亚像素距离嵌入以及相应的空间自我自我性别机制之间用于可靠的上下文。,我们开发了一个深层变压器网络,用于编码WSI并使用来自首尔国立大学医院DN患者的56个肾脏活检WSI的数据集进行编码并预测未来的ESRD。Using a leave-one-out cross-validation scheme, our modified transformer framework outperformed RNNs, XGBoost, and logistic regression baseline models, and resulted in an area under the receiver operating characteristic curve (AUC) of 0.97 (95% CI: 0.90-1.00) for predicting two-year ESRD, compared with an AUC of 0.86 (95% CI: 0.66-0.99)没有我们的相对距离嵌入,而AUC为0.76(95%CI:0.59-0.92),而无需降解自动编码器模块。关键词:糖尿病性肾病,变压器,自我注意,终末期肾脏疾病,数字病理,分割,虽然样本量较小的可变性和概括性既有挑战性,但我们基于距离的嵌入方法和过度拟合的缓解技术产生了结果,这表明使用有限的病理数据集为未来的空间意识到WSI研究的机会。
The H2020-SPACE-ORIONAS Project “Lasercom-on-chip” for High-speed Satellite Constellation Interconnectivity A. Osman a , I. Sourikopoulos a , G. Winzer b , L. Zimmermann b , A. Maho c , M. Faugeron c , M. Sotom c , F. Caccavale g , A. Serrano Rodrigo h , M. Chiesa h , D. Rotta h ,G。B. Preve I,J。Edmunds D,M。Welch D,S。Kehayas D,W。Dorward J,F。Duport E,R。Costa F,D。Mesquita F和L. Stampoulidis A Leo Space Photonics R&D,Lefkippos Tech。公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP GmbH,法兰克福(Oder),德国C Thales Alenia Space,26 AV。J-F Champollion,31037 Toulouse Cedex 1,法国D Gooch和Housego,Broomhill Way,Torquay,Torquay,Devon,Devon,TQ2 7QL,英国E IIII-V LAB,“ NOKIA BELL LABS”的联合实验室,“ NOKIA BELL LABS”,“ THALES REANCESS READIODS READICY
增强现实(AR)展示是多年来一直是一个热门话题,因为它们为高投资回报提供了潜力。在AR显示器和智能眼镜在市场上更加接受之前,有许多技术挑战将出现许多技术挑战。技术挑战之一是紧凑而轻巧的光学器件的光学设计,能够将增强图像投影到视力线上,并舒适。在波导技术中正在取得重大进步,以生产大型FOV和眼箱。同样,轻型发动机也被开发为较不笨重,更高效。在本文中,我们介绍了有关如何通过Trilite Technologies开发的下一代激光束扫描仪(LBS)的见解,可以与不同的组合器集成并为不同的AR显示器和智能眼镜架构实施。LBS的独特设计借出了自身,以不同的配置为不同的配置,如波导和组合器的不同设计和布局所决定的。此外,下一代磅的极低剖面使眼镜从字面上看聪明。关键字:激光束扫描,LBS,AR,XR,VR,HMD,Microdisplays
硅环谐振器调制器(RRMS)具有减少足迹和功耗并增加波长多路复用(WDM)发射器的调制速度的巨大潜力。但是,RRM的光学特性对制造变化高度敏感,这使它们在设计量生产或大量WDM通道方面具有挑战性。在这项工作中,我们提供了一种RRM设计,该设计经过专门设计和实验验证,以降低对制造变化的敏感性。这包括对抗性过度和不足的暴露(±30 nm横向偏差)的敏感性分析以及耦合部分内蚀刻深度变化(±10 nm深度变化)的敏感性分析。对于我们的设计,偏离目标耦合强度的偏差将两倍提高。使用标准的CMOS兼容过程在Soi晶圆上制造了提议的设备。我们演示了以上灭绝比以上的RRM,OMA更好,即-7 dB(2 V pp)和29 GHz的电光带宽,仅在32 GB/s下显示仅受我们的测量设置的开放式眼睛图。测得的耦合系数与模拟值非常吻合。此外,我们应用了相同的设计修改来实现低掺杂的RRM和基于环的添加 - 滴滴 - 磁材(OADMS)。模拟和测量的耦合系数之间的一致性(我们确定为设备性能可变性的主要来源),进一步证实了我们的设计修改的有效性。这些结果表明,可以利用所提出的设计,以大规模地,尤其是在WDM系统中的大规模制造基于谐振的设备。
相变的材料由于其急剧依赖于温度的特性而有希望,并且在光学开关和传感技术中具有很高的潜力。在此类材料中,二氧化钒(VO 2)是最实用的,因为其过渡温度接近室温。基于VO 2的基于电阻率的基于电阻率的较大温度系数来检测红外辐射。但是,为了达到较大的灵敏度,活跃的辐射吸收区域必须足够大,以允许VO 2吸收的入射辐射的足够温度积累,从而需要大的像素尺寸并降低降压测定量测量的空间分辨率。此外,在大多数应用程序中,VO 2材料的吸收未针对特定频段进行优化。另一方面,可以对等离激元纳米构型进行调整和设计,以选择性,有效地吸收入射辐射的特定带,以用于局部加热和热成像。在这项工作中,我们建议将血浆纳米结构与vo 2纳米线结合在一起,以扩大由于热变化而导致阻抗变化的斜率,以达到更高的敏感性。我们通过提出的检测器对中红外电磁辐射吸收的数值分析显示,该检测器显示等离子吸收剂接近完美的吸收。此外,由于底物在热分布中起着很大的作用,预计热堆积和纳米线抗性变化是不同的底物。我们还讨论了拟议设备上VO 2纳米线的制造。我们通过我们的新型降低测量器显示出高灵敏度和超低噪声等效温度差异(NEDT)。
H2020空间 - 苏迪亚山脉项目:光子数字和类似物的空间级光电极接口,非常高的卫星有效载荷I. Sourikopoulos,L.Spampoulidis A,S。Giannakopoulos A,S.Giannakopoulos A,H,H,H,H,H。 C,G。Bouisset C,N。Venet C,M。Sotom C,M。Irion D,F。Schaub D,J。Barbero E,D。Lopez E,R。G. Walker F,Y.公园,27 Neapoleos Str。,Ag。Paraskevi,15341,雅典,希腊B IHP -Leibniz -institutFür创新的Mikroelelektronik,Im Technologiepark,25,15236 Frankfurt(Oder),德国C Thales Chales c Thales Alenia Alenia Space,26 Av。J -f Champolion,31037 Toulouse Cedex 1,法国D Albis Optoelectronics AG,Moosstrasse 2A,8803 Rueschlikon,瑞士英国54号贝恩广场的Alter Technology UK,苏格兰,苏格兰7DQ Livingston,Microtechnology and Nanoscience系,Chalmers Technology University of Gothenburg,瑞典
二维材料中的不均匀和三维应变工程为控制应变敏感光子性能的应变设备开辟了新的途径。在这里,我们提出了一种通过皱纹单层WSE 2来调整应变的方法,该单层WSE 2连接到15 nm厚的ALD支撑层并压缩软底物上的异质结构。aldfim sti tipers 2D材料,可以通过光学分解的微米尺度皱纹,而不是纳米尺度缩放和折叠。使用光致发光光谱法,我们显示皱纹引入了47 MeV对带隙的周期性调节,与皱纹处的 +0.67%拉伸应变的应变调制相对应,到槽在槽中的-0.31%压缩应变。此外,我们表明,循环底物应变机械地重新发现了皱纹和结果带调的大小和方向。这些结果铺平了基于紧张的2D材料的可伸缩多发性设备的道路。
最近实验和理论工作都表明,光学上可寻址的分子旋转可能具有巨大的量子信息处理潜力。诸如旋转量子量初始化,相干控制和读数之类的实验作品表明,旋转分子可以是量子计算的绝佳候选者。在高温下分子自由基上的时间分辨电子自旋共振表明分子旋转可能是高温量子门操作的基石,因此克服了维持量子电路的低温技术障碍。在此程序中,我们讨论了分子材料的潜力,尤其是二维分子网络,用于光学驱动的量子信息处理,并结合纳米光器设备。尽管这只是一个理论上的建议,但我们希望这可以鼓舞量子计算的未来发展。显然,前进的路上有许多困难,例如分子中的单个自旋读数,分子网络的最佳设计和相应的光学仪器,将来可以解决。