在本项目中,我们使用变分量子优化 (VQO) 研究了具有噪声资源的量子隐形传态协议。量子隐形传态是一项基本的量子信息论任务,其中 Alice 旨在使用共享纠缠资源和经典通信将未知量子态传送给 Bob。隐形传态协议包括 Alice 实施的测量、将测量结果传输给 Bob 的经典信道以及 Bob 根据测量结果实施的一组校正操作。对于最大纠缠态,Bennett 等人提出的著名标准隐形传态协议。[1] 以贝尔测量和泡利校正的形式定义,给出了一个完美的协议。然而,在存在噪声的情况下,这种完美的隐形传态协议通常是不可能的,相反,人们的目标是通过找到合适的测量和校正操作来最大化协议所谓的隐形传态保真度。在这里,我们使用在 PennyLane 框架中模拟的 VQO ansatz 来寻找实现噪声纠缠资源状态非经典保真度的隐形传态协议。我们对 Badziag 等类的具有幺正和噪声元素的隐形传态协议进行了详细的数值研究。状态,它们是两个加权贝尔态的混合。此外,我们研究了量子三重-沃纳态和量子四重-沃纳态,它们代表了三级或四级量子系统内完全混合和最大纠缠态的混合谱,可用作隐形传态协议中的纠缠资源。
未知量子状态的传送[1-3]是量子信息科学的基石。但是,标准传送协议的完美实现[1]需要高度脆弱的单元。因此,在实际情况下,必须考虑不完美的单线[4,5],其中资源状态偏离完美单元的程度,控制着传送的实现中的退化。最终,如果不完美的增长超出了一定阈值,则可以通过经典手段满足或超过所产生的限制,这表明标准传送协议不再提供任何量子优势。在这封信中,我们表明,即使资源状态与完美的单元显着不同,如果发送者和接收器可以访问量子开关[6-14],则可以保留如此量子优势。实际上,我们表明,实际上,更高的缺陷可能对量子传送更有帮助。量子开关是具有因果秩序叠加的过程的一个示例[7,8,15]。最近已利用此类过程来改善查询复杂性任务[16],增强了量子通道的经典能力[6,9,11],并改善了稳态量子量子温度计[17]。目前的工作将其拟合到该范式中,这是另一个明确的例子,其中因果秩序的叠加产生了有限的操作优势。
基于测量的量子计算中的计算能力源于纠缠资源状态的对称性保护的托托(SPT)顺序。但是,资源状态容易出现准备错误。我们使用资源状态的冗余非局部对称性引入了量子误差校正方法。我们基于将一维聚类状态的z 2×z 2对称性扩展到其他图状态的传送协议中。Qubit Zz-Crosstalk错误,在量子设备中突出,降低了通常的群集状态的传送性。但是,正如我们在量子硬件上所证明的那样,一旦我们以冗余对称性生长图形状态,就可以恢复完美的传送性。我们将基本的冗余序列识别为纠缠频谱中受错误保护的脱落。
TR 102 768 Ver. 1.1.1 - 卫星分配系统的交互信道;移动场景中 EN 301 790 使用指南 (20/04/2009) TS 102 611-1 Ver. 1.2.1 - IP 数据广播:移动性实施指南;第 1 部分:DVB-H 上的 IP 数据广播 (29/04/2009) TS 102 611-2 Ver. 1.1.1 - IP 数据广播:移动性实施指南;第 2 部分:DVB-SH 上的 IP 数据广播 (29/04/2009) TS 102 471 Ver. 1.3.1 - DVB-H 上的 IP 数据广播:电子服务指南 (ESG) (24/04/2009) TS 102 770 Ver. 1.1.1 - DVB 系统中的系统可更新性消息(SRM)(2009/05/12)EN 301 790 Ver. 1.5.1 - 卫星分发系统的交互信道(2009/05/13)TR 102 679 Ver. 1.1.1 - DVB URN 和分类方案注册表(2009/05/13)TS 102 472 Ver. 1.3.1 - DVB-H 上的 IP 数据广播:内容传送协议(2009/06/09)TR 102 377 Ver. 1.4.1 - DVB-H 实施指南(2009/06/16)TS 102 771 Ver. 1.1.1- 通用流封装 (GSE) 实施指南 (2009/06/16) TS 102 591 Ver. 1.2.1 - DVB-H 上的 IP 数据广播:内容传送协议 (CDP) 实施指南 (2009/06/25) TR 101 211 Ver. 1.9.1 - 服务信息 (SI) 实施和使用指南 (2009/06/26) TS 101 162 Ver. 1.2.1 - DVB 系统的服务信息 (SI) 和数据广播代码分配 (2009/07/01)
全息原理及其在ADS/CFT对应关系中的实现导致一般相对性和量子信息之间的意外联系。这为研究量子重力模型的各个方面奠定了阶段,否则在桌上量子计算实验中,这些量子重力模型很难访问。最近的作品设计了一种特殊的传送协议,该协议实现了令人惊讶的通信方式,最自然地通过可穿越的虫洞的物理学来解释。在这项工作中,我们基于此协议进行了有关最先进的量子计算机的量子实验。目标量子处理单元(QPU)包括Quantinuum的捕获 - 离子系统模型H1-1和五个IBM各种体系结构的IBM超导QPU,并具有公共和优质用户访问。我们报告了这些QPU的观察到的传送信号,其中最佳的传送信号达到了80%的理论预测。在尝试优化协议时,我们登上了一组参数,这些参数转移了经典位而不是量子位,但是转移方法仍然采用量子争夺,是一种意外的现象。我们概述了实施过程中所面临的实验挑战,以及对工作导致的量子动态的新理论见解。我们还开发了QGLAB - 一种开源的端到端软件解决方案,可促进对Qiskit和TKET SDKS支持的最先进和新兴QPU的QPU进行虫洞启发的传送实验。我们将研究和可交付成果视为实现更复杂的实验的早期实际步骤,以间接探测实验室中量子重力的探测。
自Bennett等人以来。拟议的传送在1993年[1],量子状态传输对于开发量子计算和量子通信至关重要[2,3]。标准的传送理论方法基于希尔伯特空间中爱因斯坦 - 波多尔斯基 - 罗森(EPR)对[4]的特性。纠缠和投影假设以及发件人和接收者之间的经典通信通常分别称为爱丽丝和鲍勃,构成了传送协议的基本要素。在1990年代后期,通过使用参数下调(PDC)中产生的纠缠光子(PDC)进行的Innsbruck [5]和Rome [6]的实验中实现了传送。关于谁首先执行真正的量子传送存在存在差异[7]。一方面,因斯布鲁克实验使用了两对纠缠的光子,四个光子之一被用作触发器来生成要传送的单粒子状态[5,8]。四光子来源的一个显着特征是纠缠交换的第一个实验[9,10]。然而,鉴于仅在一个自由度和线性光学元件中使用纠缠的两个光子的四个极化钟状态[11],请参考文献中描述的传送方案。1在Innsbruck计划中无法获得100%的成功。此外,该实验的一个有争议的方面是传送的后选择性或非稳定性[12-14]。1。参考。15进行了。另一方面,在罗马传送实验中,使用了一对下调的光子,并且要传送的状态在一个光子的两个自由度之一中编码[15],这与参考文献中的工作有所不同。相比之下,贝尔状态测量(BSM)取得了100%的成功。16,参考文献中给出的理论建议的不同实施。Wigner形式主义构成了希尔伯特空间中东正教配方的补充方法,用于研究用PDC实施的量子光学实验[17-25]。
并非总是会发生鲍勃系统的状态恰好| ψ⟩。例如,当爱丽丝获得结果2时,他的量子将变为状态α| 0⟩-β| 1⟩,他将不得不在其系统上执行一秒钟的操作才能恢复| ψ⟩。在这种情况下,他将不得不夸大| 1⟩,在计算基础上应用O 2代表的统一。对于B),您必须找到所有其他操作{O K} k。当然,鲍勃只知道要采用什么操作,因为他知道国家|他的Qubits的b k⟩,他知道这是因为爱丽丝告诉他她的测量结果。如果爱丽丝没有告诉他结果怎么办?在那种情况下,鲍勃将不得不尝试猜测他的贵族状态。他知道所有测量结果都是同样可能的,对于每个测量结果,他都有不同的状态。幸运的是,在量子力学中,我们有一种用密度矩阵描述纯状态的概率混合物的方法。鲍勃在爱丽丝的衡量标准之后的状态是ρ= p k 1 4 | b k⟩⟨b k | 。在第c部分中,您必须证明,当鲍勃不知道测量结果时,他对自己的状态是什么或如何恢复| ψ⟩,即ρ= 1 b。这告诉我们,只有在爱丽丝使用(可能是经典的)通信渠道与鲍勃(她的测量结果)共享一些信息时,量子传送协议只能起作用。请注意,当爱丽丝和鲍勃传送一个Qubit的状态时,他们会失去纠缠,因此无法重复传送其他任何内容的协议。2)。令人印象深刻的是,量子传送带来了成本。到目前为止,我们只看到了如何传送纯状态。一个人可能想知道,如果国家爱丽丝试图与她无法控制的参考系统R纠缠在一起会发生什么。鲍勃一侧的最终状态会以相同的方式与R纠缠在一起吗?答案是,是的,是的(图在d)和e)中被要求更正式地证明这一点。您可以从考虑每个混合状态都可以在其本egenbasis中扩展,ρs= p i p i |我⟩⟨i | S,带有| i⟩=αI| 0⟩ +βI| 0⟩。检查该协议是否适用于这样的状态。,例如,您可以在爱丽丝(Alice)以铃铛为基础测量她的两个量子位并获得结果2。请记住,整个系统的最终状态由