SBC计划部dcconsultees@scotborders.gov.uk苏格兰边界理事会通过电子邮件参考:24/00031/FUL - 规划许可的条件7的变化19/00182/ppp - 位于金斯梅德之家的地面上,位于金斯米德斯大道,金斯米德斯路。异议条件7需要管理计划 - 对于该地点和申请人要求保护条件7的保护7被简化为“申请站点内的林地”,因为“条件失败了循环4/1998的测试,因为条件与提出的开发无关。”但是,循环4/1998明确指出,规划机构可能会施加条件,即使申请人在申请人之外,该条件也可以根据申请人的控制,而该条件是申请的主题。开发人员已经提出了许多过去的应用程序,以进一步发展Kingsmeadows House的理由,在考虑此应用程序不忽视以前的历史时,这一点很重要。2015年,该公司当时的首席执行官在公开场合承诺,由于毫无疑问的便利设施和公共利益,不要进一步发展理由。在记录大约500异议时,在上次申请中进行了公共利益。应拒绝此应用,并受到林地的保护。提取物是从2021年提交的先前文件中附加的。真诚的
5 https://training.fortinet.com/ 6 https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2021/fortinet-pledges-train-1-million-people-help-close- cybersecurity-skills-gap-following-white-house-summit 7 https://www.fortinet.com/corporate/about-us/newsroom/press-releases/2022/fortinet-announet-announce-frea--freation-training-offering-schools--white-schools-white-house-cyber-workforce-workforce-decucation-ucucation-ucucation-ucucation-ucuc--suct-sump.-in-sumbit-summit-summit
抽象的新方法和改进的方法可以从热干岩中提取能量,如果成功的话,它们可以从以前未开发的资源中解锁能源生产的Terawatt。三种有希望的方法包括增强的地热系统(EGS),高级地热系统(AGS)和笼中的地球热系统(CGS)。EGS使用粒子支撑的液压刺激裂缝通过低渗透率岩石传达流体以提取热量。ags使用闭环流过一系列深井,以提取热量,而无需液压刺激。CGS使用边界井来包含高压支撑的液压骨折,同时最大程度地减少地震风险。但是,这些方法中的每一种都有其自身的挑战。例如,由于支撑剂降解和快速的热短路而导致的产量较低。ags可能会出现井钻孔和较低的热量提取的极端资本成本。CGS冒着未经证实的笼子概念和极端抽水成本的风险。在这里,我们试图在包括天然裂缝在内的超高不确定性绿色场景中预测每种方法的性能。我们的目标地点是科罗拉多州柯林斯堡附近的Wattenberg地热异常。使用我们的开源地热设计工具(GEODT)仅使用基本输入数据,我们为将来的6公里深井完成了随机功率和经济风险评估。在传导为主的瓦滕贝格异常中,我们预计底部孔温度在220至300°C的范围内。地下应力和断层条件未知。岩石性能除了地下室可能由火成岩或变质岩组成的地下室之外。我们的分析预测,具有五口井(即XGS)的“ X” pattern的CGS拥有99至220美元/MWH的经济热量产量的最大前景,其次是87至2200美元/MWH的3井EGS,然后是410至860至860 $ usd/mwh。
摘要越来越多地将机器学习应用于人类行为。这些算法越来越遭受一个隐藏但严重的问题。之所以出现,是因为他们经常预测一件事,而希望另一件事。采用推荐系统:它可以预测点击,但希望识别偏好。或一种使放射科医生自动化的算法:它可以预测在静置的诊断,同时希望确定其反思性判断。心理学向我们展示了此类预测任务的目标与我们希望实现的目标之间的差距:人们可以无意识地点击;专家可能会疲倦并犯系统错误。我们认为这种情况无处不在,称它们为“反演问题”:真正的目标需要理解在行为数据中直接测量的精神状态,而必须与行为倒转。识别和解决这些问题需要借鉴行为和计算科学的新工具。
1990 年,安大略省哈格斯维尔的 1400 万个旧轮胎被烧毁。一位关注这一情况的私营企业家与 Goldenberg 合作,制造了一台机器人机器,可以确定轮胎是否支持翻新。为了检查轮胎,旧轮胎被安装起来,以便小型机械臂可以在轮胎内部旋转以绘制内部结构。在同一十年中,Goldenberg 开始与加拿大原子能有限公司 (AECL) 进行为期五年的合作,其中包括开发多个机器人来支持核能运营。第一个是制造用于维护核反应堆管道的机械臂。管道需要定期进行内部清洁,但由于高辐射水平,对人类构成重大风险。Goldenberg 为 AECL 创建的另一个工作原型是长距离机械手,用于在放射性排放高于人类安全允许值的区域运行。它包括一个超声波扫描仪,用于绕着反应堆的支腿移动并定期扫描危险缺陷。第三次合作包括自动处理员工生物样本,以便可以在无需人工干预的情况下对生物材料进行准备和放射性扫描。
病毒学教授,病理学系健康科学系温迪·伯格斯(Wendy Burgers)是开普敦大学(UCT)病理学系病毒学教授,健康科学学院。她获得了BSC学位,BSC(荣誉)程度和MSC度,并与UCT区分开;和剑桥大学的博士学位。在2001年返回南非后,她获得了南非医学研究委员会(SAMRC)的博士后研究金,并加入了UCT的南非艾滋病疫苗倡议,开发了候选HIV疫苗。Burgers教授建立了一项独立的研究计划,重点是了解艾滋病毒感染中的细胞免疫反应,这是通过享有声望的惠康信托基金会在公共卫生和热带医学领域的中级奖学金资助,然后获得了欧洲和发展中国家临床试验伙伴关系的高级奖学金奖。在此期间,在美国国家卫生研究院(NIH)的疫苗研究中心(NIH)接受了Fogarty International培训奖学金培训。她一直是一位软资金的高级研究员,直到2014年,她被任命为UCT的高级讲师。于2017年被晋升为副教授,并于2022年被晋升为副教授。她是传染病和分子医学研究所的正式成员,也是非洲惠康传染病研究中心的成员。汉堡是一名病毒免疫学家,由于其对了解传染病的免疫力以及它们在疫苗开发和疫苗保护方面的应用而受到了全球认可。她已经研究了导致我们时代三个全球大流行病的病原体的免疫力:HIV/AIDS,TB和COVID-19。她最近的工作集中在感染和疫苗接种后了解对SARS-COV-2病毒的细胞免疫。汉堡领导了几项高影响研究,描述了对Covid-19-19疫苗接种和感染的强度和持续时间,以及SARS-COV-2变体具有关注的逃避免疫力的能力。她在这些领域的工作被高度引用,并发表在世界领先的科学和医学期刊上,即科学转化医学,新英格兰医学杂志和柳叶刀。这些研究是该领域最好的国际研究之一,可以告知我们对疫苗免疫记忆反应的理解并塑造COVID-19 COVID-19疫苗接种政策。值得注意的是,她对T细胞对SARS-COV-2的响应的开创性工作最终导致了科学期刊的一份高级作者论文,她的小组是第一个表明COVID-19疫苗接种的T细胞反应可以与Omicron的疫苗接种交叉反应,并且疫苗仍然可以为这种高度突变的ViRUS提供保护。这是一个重大的突破,自2022年以来,这项工作被引用了382次,并由60个新闻媒体展出。在19日大流行之前,她的工作着重于HIV发病机理以及HIV如何改变免疫系统。以及共同感染和合并症的后果。她确定了在未处理的HIV感染中与病毒控制相关的特定T细胞反应,并描述了尽管治疗了持续性和破坏性免疫激活。感染了艾滋病毒的人患有结核病的风险增加,在一系列出版物中,她的小组确定了一系列免疫力
39288 伯格 +49 (0) 3921 90-3109 +49 (0) 3921 90-3190 logbtl1711.kpgezi@bundeswehr.org
Arvid E. Osterberg 博士家庭住址 大学地址 Arvid E. Osterberg 博士 Arvid E. Osterberg 博士,大学教授 930 Ash Avenue 建筑系,493 设计学院 艾姆斯,爱荷华州 50014-7828 爱荷华州立大学,艾姆斯,爱荷华州 50011 arvido9@gmail.com arvido@iastate.edu 奖项和荣誉 艾姆斯人道主义奖,由艾姆斯人际关系委员会颁发,以表彰其在促进艾姆斯社区每个人的包容性、公平和平等方面所做的贡献 (2015) 被任命为爱荷华州立大学大学教授,以表彰其杰出的大学公民意识以及为爱荷华州立大学及其服务的公众所做的服务 (2014) 艾姆斯历史保护委员会重大成就奖,表彰其促进艾姆斯仓库的保护并提高公众对历史保护的意识 (1991) 在奥斯特伯格住宅设计被采用时,接受 ABC 节目“早安美国”的现场采访被选为美国五大“梦想家园”之一(1988 年) 奥斯特伯格住宅设计荣获爱荷华州能源政策委员会奖,该设计因其出色的节能设计和爱荷华州首个大型太阳能改造而获得该奖(1982 年) 学位 密歇根大学安娜堡分校建筑学博士(和老年学证书)(1980 年) 伊利诺伊大学香槟分校建筑学硕士(1972 年) 伊利诺伊大学香槟分校建筑学学士(1969 年) 伊利诺伊州注册建筑师(1972 年至今) 专业协会(过去和/或现在的个人会员) 国家历史保护信托基金 弗兰克·劳埃德·赖特基金会 保护技术协会 爱荷华州保护联盟 内布拉斯加州历史学会 科罗拉多州历史学会 商业考古学会 老年学学会 美国老龄化协会 美国住房教育者协会 环境设计研究协会 美国太阳能协会 爱荷华州建筑辅助技术 (环境工作组) 爱荷华州风能协会 美国国家建筑规范和标准会议 国际太阳能协会美国分会 爱荷华州立大学学术职位 大学教授(50% B-base 9 个月任命)(2017 年至今) 大学教授(100% B-base 9 个月任命)(2014-2017 年) 教授(终身教授)(100% B-base 9 个月任命)(1995-2014 年) 终身副教授(100% B-base 9 个月任命)(1981-1995 年) 助理教授(100% B-base 9 个月任命)(1977-1981 年) 保护与文化遗产项目联合创始人 (2017 年) 建筑技术实验室主管教授 (1995-2007 年)
蒂娜·舒恩伯格上校在美国陆军战争学院毕业,担任国家情报总监办公室研究员,在国家反扩散和生物安全中心任职。舒恩伯格上校最近的职务是美国特种作战司令部 (USSOCOM) J10 反大规模杀伤性武器 (CWMD) 局的计划、整合和评估部门负责人。该局执行 CDRUSSOCOM 的 CWMD 协调权。她领导了国防部长办公室 (OSD)、地理 (GCC) 和职能作战司令部 (FCC) 的 CWMD 规划支持,以进行战役、应急和危机行动规划,包括 SECDEF 的 CWMD 职能战役计划。她领导了年度 CWMD 评估的执行,以评估 SECDEF 的准备情况和能力建议 (2020 - 2022)。