第一种估计方法使用频域中的最小二乘算法,基于 chirp z 变换。第二种估计方法是通过在第一种方法中添加频域微分 ↵ 中的边界项和工具变量而创建的。添加的边界项在激励开始时产生更好的估计,而工具变量在噪声水平高时导致较小的偏差。因此,在概念程序的算法中选择了第二种方法,因为它被认为比第一种方法具有更好的性能。变换的顺序属性确保了实时功能,并且程序的最大延迟仅略高于一秒。
第一种估计方法使用频域中的最小二乘算法,基于 chirp z 变换。第二种估计方法是通过在第一种方法中添加频域微分 ↵ 中的边界项和工具变量而创建的。添加的边界项在激励开始时产生更好的估计,而工具变量在噪声水平高时导致较小的偏差。因此,在概念程序的算法中选择了第二种方法,因为它被认为比第一种方法具有更好的性能。变换的顺序属性确保了实时功能,并且程序的最大延迟仅略高于一秒。
本文提出了一种基于滑模观测器的混合储能系统(HESS)动态等效荷电状态(ESOC)估计方法。由于HESS中耦合了不同类型的储能元件和电力电子电路,传统的SOC估计方法不能反映HESS的实时运行特性。针对这一问题,本文基于HESS模型构建了滑模观测器,通过采集相应的电压和电流信号,可以实时准确观测储能元件的内部参数。进一步结合实时电荷平衡的思想定义动态ESOC,以反映HESS的准确可用容量。最后,给出基于MATLAB / Simulink模型的仿真结果,验证了所提出的动态ESOC的可行性。
由于学习高维概率致密性的困难,用于新物理过程异常检测的方法通常仅限于低维空间。尤其是在组成级别上,在流行密度估计方法中,很难纳入理想的特性,例如突变不变性和可变长度输入。在这项工作中,我们基于扩散模型引入了粒子物理数据的置换不变的密度估计值,该模型是专门设计用于处理可变长度输入的。我们通过利用学习的密度作为置换式异常检测评分来证明我们的方法论的功效,从而有效地识别了仅背景假设下的可能性很小的JET。为了验证我们的密度估计方法,我们研究了学习密度的比率,并与受监督分类算法获得的密度相比。
摘要量子状态的相是用于量子电信,信号处理和计算的重要信息载体。量子相估计是在量子水平上提取和控制有用信息的基本操作。在这里,我们分析了量子相估计的各种方法时,当表征量子过程的相参数被刻在连接到用作探针信号的量子状态的相对相中。估计方法基于信号处理的标准概念(傅立叶变换,最大似然),但在量子领域中运行。我们还以经典和量子形式利用了Fisher信息,以评估每种量子相估计方法的性能。我们证明了可以通过优化的量子纠缠获得的,可以通过经典地获得增强的估计性能。超出对量子相估计的意义,结果说明了信号处理的标准概念如何有助于量子信息和量子技术的持续发展。
第13条根据CDR第3(2)(b)条,当定量影响的精确估计不可行时,机构必须使用代表性抽样或其他可靠的推理方法来达到该图。如果无法进行确切的估计,请参考文档,其中可以找到所应用的估计方法的详细信息。
摘要 - 作为自治系统,越来越多地依赖深度神经网络(DNN)来实施导航管道功能,不确定性估计方法至关重要,这是估计对DNN预测的信心的重要性。贝叶斯深度学习(BDL)提供了一种原则性的方法来模拟DNN中的不确定性。但是,在基于DNN的系统中,并非所有组件都使用不确定性估计方法,并且通常会忽略它们之间的不确定性传播。本文提供了一种考虑BDL组件之间的不确定性和相互作用以捕获整体系统不确定性的方法。我们研究了基于BDL的系统对自动航空导航的不确定性传播的影响。实验表明,我们的方法使我们能够捕获有用的不确定性估计,同时在最终任务中稍微改善了系统的性能。此外,我们讨论采用BDL来构建可靠的自主系统的好处,挑战和含义。索引术语 - Bayesian深度学习,不确定性宣传,无人驾驶,导航,动态依赖能力
如今,状态估计被广泛用于诸如自动驾驶和无人机导航之类的领域。但是,在实际应用中,很难获得准确的目标运动模型和噪声协方差。这导致传统卡尔曼过滤器的估计准确性降低。为了解决此问题,本文提出了一种基于注意参数学习模块的自适应模型免费状态估计方法。此方法将变形金刚的编码器与长期短期内存网络(LSTM)结合在一起,并通过offline学习测量数据获得了系统的操作特性,而无需对系统动力学和测量特性进行建模。此外,根据注意力学习模块的输出,期望最大化(EM)算法用于估计在线系统模型参数,并使用KalmanFureter来获得状态估计。使用GPS轨迹路径数据集验证了本文,实验结果表明,所提出的参数自适应模型自由状态估计方法的估计精度比其他模型具有更好的估计精度,从而提供了一种使用深度学习网络进行状态估计的有效方法。