红外 (IR) 发射稀土掺杂材料已广泛用于制造光纤放大器、电信、光电子和波导等各个领域的集成光学设备的有源元件。在各种稀土元素中,三价铒离子 (Er 3+) 备受关注,因为它们的发射行为跨越了 1300–1650 nm 的低损耗电信窗口。在本文中,我们报告了两种类型的聚合物波导放大器。8 cm 长、光刻图案化的螺旋波导使用 95 mW 的 980 nm 泵浦功率提供 8 dB 的增益。增益在 1530 至 1590 nm 之间观察到。我们还报告了使用基于双光子光刻的 3D 打印方法制造的聚合物波导放大器的首次演示,为快速制作有源 3D 打印设备和可能超越平面限制的有源光子设备奠定了基础。
可编程光子集成电路正成为量子信息处理和人工神经网络等应用的一个有吸引力的平台。然而,由于商业代工厂缺乏低功耗和低损耗的移相器,目前的可编程电路在可扩展性方面受到限制。在这里,我们在硅光子代工平台 (IMEC 的 iSiPP50G) 上展示了一种带有低功耗光子微机电系统 (MEMS) 驱动的紧凑型移相器。该设备在 1550 nm 处实现 (2.9 π ± π) 相移,插入损耗为 (0.33 + 0.15 − 0.10) dB,V π 为 (10.7 + 2.2 − 1.4) V,L π 为 (17.2 + 8.8 − 4.3) µ m。我们还测量了空气中的 1.03MHz 的驱动带宽 f − 3 dB。我们相信,我们在硅光子代工厂兼容技术中实现的低损耗和低功耗光子 MEMS 移相器的演示消除了可编程光子集成电路规模化的主要障碍。© 2021 美国光学学会
专利:1) 生产低损耗陶瓷的方法 V. Priyadarsini、R.Ratheesh、H. Sreemoolanadhan 和 S. Chandrasekhar,印度专利号 275251,2016 年。2) 陶瓷填充氟聚合物组合物、方法及其应用 S.Rajesh、KP Murali 和 R.Ratheesh,印度专利号 294964,2018 年。3) 陶瓷填充氟聚合物组合物、方法及其应用,S. Rajesh、KP Murali 和 R.Ratheesh,美国专利号 US9455064 B2,2016 年 9 月 27 日 4) 陶瓷填料、制备陶瓷填料的方法及其作为谐振器和层压板的应用,R.Ratheesh、K. Stanly Jacob、KPMurali、Akhilesh Jain 和 PR Hannurkar,美国专利号 US 9505902 B2,2016 年 11 月 29 日2016年发表论文:1)双钒酸盐的结构和微波介电性能
GRIDCON ® ACF 工业版是具有挑战性的补偿任务的首选,这些任务需要可靠性和安全性,例如,甚至在超出正常工作电压和具有挑战性的环境条件下:I 可在满功率下运行高达 690 V 或更高电压,而无需降容I 额定电流可以以模块化方式从 125 A 扩展到 3,000 A,例如用于 STATCOM 系统I 高功率密度和紧凑设计I 低损耗I 非常耐用的薄膜电容器I 过电压类别 III 高达 1000 V - 即使在具有隔离中性点的电网中(IT 网络配置)I 防护等级可达 IP 54,可选外部水冷以实现完全封装I 动态补偿无功功率、谐波和闪变,以及在一个单元中平衡负载
自量子计算初期以来,产生稳定量子位的最大挑战之一是量子系统的高损失率,导致量子状态的变质并破坏量子的损失。在这方面,对于技术应用而言,需要长时间的退积时间和低损失的系统,并且可以更好地了解量子力学。获得低损耗系统的一种方法是将量子乘数(例如超导电路)与诸如声子等散装固体的机械自由度息息。在这篇简短的评论中,我试图解释了已经完成了这种耦合的一些不同方法,并对有关该主题的论文进行了简短的评论。i然后尝试使用机械自由度(即使用表面声波(SAW)的量子控制)来指定一种量子控制方法。
摘要:量子密钥分发 (QKD) 是目前以信息理论安全方式远距离生成密钥的成熟方法,因为 QKD 的保密性依赖于量子物理定律而不是计算复杂性。为了实现 QKD 的工业化,需要低成本、大规模生产和实用的 QKD 装置。因此,发送器和接收器各自组件的光子和电子集成目前备受关注。我们在此介绍一种高速 (2.5 GHz) 集成 QKD 装置,其特点是硅光子发射芯片可实现高速调制和精确状态准备,以及采用飞秒激光微加工技术制造的铝硼硅酸盐玻璃中偏振无关的低损耗接收器芯片。我们的系统实现的原始误码率、量子误码率和密钥速率相当于基于分立元件的更复杂的最先进装置 [1,2]。
用于经典波(例如电磁波和声波)的拓扑材料引起了越来越多的关注,这主要是因为它们具有鲁棒性、低损耗以及边界赋予的新的人工自由度。表面声波 (SAW) 作为广泛使用的微型设备相关信息载体,在当今的无线通信和传感网络中无处不在。在此,我们报告了基于单片集成平台的 SAW 拓扑绝缘体的实现。通过在压电半空间上使用工作频率为数十兆赫的微型声学谐振器阵列,我们成功地赋予电泵浦瑞利型 SAW 以“自旋动量锁定”特性,使固态声波在“三维体积上二维表面的一维界面”上任意绕行并穿过缺陷和交叉点,而损耗比任何其他解决方案都要小得多。这些革命性的拓扑 SAW 可能为未来移动通信、传感和量子信息处理等领域具有超高性能和先进功能的单片电子(光子)声子电路开辟一条道路。
已准备就绪,例如感应,通信和信息处理。可以通过光纤网络在局部量子节点之间分配信息,在局部量子节点之间分配信息,可以通过在局部量子节点之间分配信息来实现。 最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。 然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。 没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。 以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。 甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。 但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。 微结构光纤为克服其中的一些挑战提供了有希望的途径。 与常规的光纤不同,其中光在Sil- 中引导。最近还开发了按需光子生成,存储,开关和多路复用的方案,并承诺要克服对高带宽,低损耗和容错的需求所带来的一些挑战。然而,在实现量子网络组件和光纤之间的无缝,低损坏,无对齐的集成方面仍然存在重大挑战。没有一个单个波长可以满足所有Quantum网络功能的需求 - 当前的光子源,量子记忆,光学开关,量子过程,并且探测器涵盖了整个近距离范围至中等范围。以前的尝试重点是将片上体系结构和原子结构与锥形纳米纤维的evaneScent田进行集成,或者通过光栅耦合器,边缘耦合器和沟渠整合。甚至已经证明,可以通过将这些方案与纤维内腔整合在一起来增强这些方案。但是,这些系统中自由空间激光组件的可伸缩性仍然是一个问题。微结构光纤为克服其中的一些挑战提供了有希望的途径。与常规的光纤不同,其中光在Sil-
量子点是电信单光子源的有希望的候选者,因为它们的发射可以在不同的低损耗电信波段上进行调谐,从而与现有的光纤网络兼容。它们适合集成到光子结构中,可以通过 Purcell 效应增强亮度,从而支持高效的量子通信技术。我们的工作重点是通过液滴外延 MOVPE 创建的 InAs/InP QD,以在电信 C 波段内运行。我们观察到 340 ps 的短辐射寿命,这是由于 Purcell 因子为 5,这是由于 QD 集成在低模体积光子晶体腔内。通过对样品温度的原位控制,我们展示了 QD 发射波长的温度调谐和在高达 25K 的温度下保持的单光子发射纯度。这些发现表明基于 QD 的无低温 C 波段单光子源的可行性,支持其在量子通信技术中的应用。
具有快速原型和重编程功能的光子综合电路(PIC)有望对众多光子技术产生革命性的影响。我们在低损耗相变材料(PCM)薄膜上报告了直接作用和重写光子电路。完整的端到端图片在一个步骤中直接写入激光写入,并没有其他制造过程,并且可以删除和重写电路的任何部分,从而促进快速设计的修改。我们证明了该技术用于不同应用的多功能性,包括用于可重构网络的光学互连织物,用于光学计算的光子横杆阵列以及用于光学信号处理的可调光滤波器。通过将直接激光写作技术与PCM相结合,我们的技术可以解锁可编程光子网络,计算和信号处理的机会。此外,可重写的光子电路可以以方便且具有成本效益的方式快速进行原型和测试,消除了对纳米化设施的需求,从而促进了更广泛的社区的道学研究和教育的扩散。