b'CIRDARCONATION肿瘤细胞(CTC)是用于转移性癌症检测和监测进展的有希望的生物标志物。但是,由于其低频和异质性,CTC的检测仍然具有挑战性。在此,我们根据使用可编程DNA杂交链反应(HCR)电路的信号扩增级联反应报告了一种生物启发的方法来检测单个癌细胞。我们使用这种方法使用抗HER2抗体(Trastuzumab)与引发剂DNA耦合,从而检测HER2 +癌细胞,从而引发了HCR级联反应,该HCR级联反应在细胞表面导致荧光信号。在4 \ XC2 \ XB0 C时,这种HCR检测方案在HER2细胞和外周血清细胞的背景下,在HER2 +细胞的膜上特别在HER2 +细胞的膜上进行了高效,特异性和敏感的信号扩增,这几乎是非荧光的。结果表明,该系统提供了一种新的策略,可以进一步开发出用于敏感有效检测CTC的体外诊断平台。
“在为美国陆军进行凝胶推进剂工作之后,”Farrar 表示,“Resodyn 在各种推进剂、炸药和烟火材料的能量混合方面取得了进展。陆军还需要为关键武器系统制造爆炸材料。Resodyn 能够通过设计和制造生产规模的共振声学混合系统来满足他们的要求。该项目产生了一种创新的制造工艺,使爆炸材料的制造成本仅为原始成本的三分之一,迄今为止为军方节省了 1800 多万美元。而且它仍在服役。”
测试和测量由程序控制,该程序将自动设置大多数参数。对于 MTS-800 满足的任何相关标准,极限值已包含在软件包中,尽管用户可以定义任何不同的值。每次测试后都会自动创建完整的报告。报告布局是预定义的,尽管任何用户定义的布局都是可能的。利用内部源作为参考的自校准过程保证了高性能。
b'听力测试纯音测听(听力测试)此测试确定您能听到声音的音量必须达到多大。测试期间,将以不同音量呈现低频和高频音调。您将被要求确认何时能够听到声音。测试将单独评估每个频率。测试将使用插入式耳机(放入耳道的泡沫插入物)、耳罩和/或耳后骨头进行。这允许测试确定听力问题是源于内耳故障(感音神经性听力损失)还是源于声波传输到内耳的问题(传导性听力损失)或两者兼而有之(混合性听力损失)。在许多情况下,有必要将声音或噪音引入未测试的耳朵。这种分散注意力的方式使听力学家能够确保在评估的耳朵中听到测试音。 (时间 20 到 30 分钟)言语听力测试 这些测试用于评估您的耳朵对所听到内容的理解能力。 通过耳机或扬声器呈现两组不同的单词列表。 一种测试以不同的响度级别管理单词列表。 它用于确定您的耳朵第一次接收语音的声级。(言语接收阈值) 第二组单词使用纯音听力检查中确定的阈值来设置呈现的声级。 这样,我们可以确定您的耳朵听到了这些单词。 然后,通过呈现一组单词,我们可以确定您的耳朵对所听到内容的理解能力。(言语辨别分数)(时间 15 到 20 分钟) 阻抗和声反射测试 这组测试用于评估中耳结构和听觉神经的声音传输特性、耳咽管的工作情况、中耳肌肉的工作情况以及中耳压力的状态。 将一个小耳塞插入耳道。耳中会传来低沉的嗡嗡声。嗡嗡声的响度可能有所不同,有时听起来可能很大。此外,还会引入微小的压力变化。这些测试中获得的信息不需要您的回应。(时间 15-20 分钟)'
免责声明:本文件并非由加拿大国防部下属机构加拿大国防研究与发展编辑部出版,但将被编入加拿大国防信息系统 (CANDIS),即国防科技文件的国家存储库。加拿大女王陛下(国防部)不作任何明示或暗示的陈述或保证,也不对本文件中包含的任何信息、产品、流程或材料的准确性、可靠性、完整性、时效性或实用性承担任何责任。本文件中的任何内容均不应解释为对其中检查的任何工具、技术或流程的特定用途的认可。依赖或使用本文件中包含的任何信息、产品、流程或材料的风险由使用或依赖本文件的人自行承担。对于因使用或依赖本文件所含信息、产品、流程或材料而产生的或与之相关的任何损害或损失,加拿大不承担任何责任。
交流信号不受地磁噪声污染。磁性 ELF ~ 1/R 2 ,检测距离更长。使用相同标量 MAD 磁强计。磁强计本底噪声低(~ 0.1 pT/ Hz)。检测范围主要受环境噪声限制:1 pT/ Hz 为 400m,0.1 pT/ Hz 为 1200m。这项工作解决了单通道噪声问题
试验的收集方法特别关注确保以某种方式收集多个 SAR 集合,以便它们可以连贯地组合成一个单一的“数据穹顶”。 “数据穹顶”一词指的是收集的数据集,该数据集覆盖“K 空间”中定义的目标区域上的半球(图 1)。这会导致传感器系统在入射角范围 20-70° 内围绕目标的所有方位角进行圆形采集,间隔适当,以避免目标的高度模糊。数据穹顶收集可以提取有关建筑物的断层扫描和体积信息。
第二次世界大战后的三十年间,美国利用苏联潜艇的高声源水平实现了远距离探测,在战略和战术反潜战中取得了空前的成功。20 世纪 80 年代,安静的苏联潜艇的出现要求美国必须开发新的革命性潜艇探测方法,才能继续实现其传统的反潜战效能。由于低频主动声学不受消音措施的影响,因此有人提议用低频主动声学来替代传统的被动声学传感器系统。作为美国海军一项紧急计划的一部分,目前正在研究这项技术背后的基础科学和物理学,但美国及其北约盟国已经开始开发使用低频主动声学的声纳。虽然这些首批系统尚未在深水中投入使用,但也在进行研究,以将这项技术应用于第三世界浅水区,并预测对手可能开发的潜在对策。
第二次世界大战后的三十年间,美国利用苏联潜艇的高声源水平实现了远距离探测,在战略和战术反潜战中取得了无与伦比的成功。20 世纪 80 年代安静的苏联潜艇的出现要求美国必须开发新的革命性潜艇探测方法,才能继续实现其传统的反潜战效能。由于低频主动声学不受静音措施的影响,因此有人提议用低频主动声学来替代传统的无源声学传感器系统。作为美国海军紧急计划的一部分,目前正在研究这项技术背后的基础科学和物理学,但美国及其北约盟国已经开始开发使用低频主动声学的声纳。虽然这些首批系统尚未在深水中投入使用,但目前正在研究将这项技术应用于第三世界浅水区,并预测对手可能采取的潜在对策。
低频噪声测量是一种科学技术,能够探测到电子设备的局部显微镜现象。它可以用作有关电子设备可靠性的应用中的诊断工具。在这项研究中,设计,开发和验证了测量1/ F噪声的低频噪声测量(LFNM)设置。测量设置由一个偏置电路,变速器放大器和动态信号分析仪组成。使用两个金属盒来保护设置免受信号干扰。开发了一个基于LabView的程序,以从动态信号分析仪中提取噪声功率频谱密度数据以进行进一步分析。测量设置的验证是通过测量两个标准电阻的热噪声进行的。获得的结果与理论值相似。