1. 乔尔·M·多斯坎德 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' -RHOOHGRUVNLQG#JPDLO FRP 'HVLJQHG UHVHDUFK SHUIRUPHG UHVHDUFK FRQWULEXWHG XQSXEOLVKHG UHDJHQWV DQDO\WLF WRROV DQDO\]HG GDWD ZURWH WKH SDSHU 6ULUDP 6XGDUVDQDP 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' VVXGDUV #MKPL HGX 3HUIRUPHG UHVHDUFK DQDO\]HG GDWD 5DQGDO $ +DQG 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1:ROIH 6W %DOWLPRUH 0' 5DQGDO +DQG #JPDLO FRP 'HVLJQHG UHVHDUFK SHUIRUPHG UHVHDUFK FRQWULEXWHG XQSXEOLVKHG UHDJHQWV DQDO\WLF WRROV -DNXE =LDN 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1:ROIH 6W %DOWLPRUH 0' M]LDN #MKPL HGX 3HUIRUPHG UHVHDUFK DQDO\]HG GDWD 0DDPH $PRDK 'DQNZDK 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' PDPRDKGD#ZDNHKHDOWK HGX $QDO\]HG GDWD /XLV *X]PDQ &ODYHO 6XPPHU ,QWHUQVKLS 3URJUDP 1HXUR6,3 6RORPRQ + 6Q\GHU 'HSDUWPHQW RI 1HXURVFLHQFH -RKQV +RSNLQV .DYOL 1HXURVFLHQFH 'LVFRYHU\ ,QVWLWXWH 7KH -RKQV +RSNLQV 6FKRRO RI 0HGLFLQH 1 :ROIH 6W %DOWLPRUH 0' OJX]PDQ #DPKHUVW HGX $QDO\]HG GDWD
摘要 错误相关电位 (ErrPs) 是绩效监控的重要脑电图 (EEG) 相关因素,对于学习和调整我们的行为至关重要。人们对 ErrPs 是否编码了除错误意识之外的更多信息知之甚少。我们报告了一项有 16 名参与者参加的实验,该实验分为三个环节,在执行光标到达任务期间偶尔会发生不同程度的视觉旋转。我们设计了一个脑机接口 (BCI) 来检测提供实时反馈的 ErrPs。单个 ErrP-BCI 解码器在各个环节之间表现出良好的传输性能,并且在错误幅度上具有可扩展性。ErrP-BCI 输出与错误幅度之间的非线性关系可预测个人感知阈值以检测错误。我们还揭示了与所需调整幅度共同变化的 θ-γ 振荡耦合。我们的研究结果为探索和扩展当前的绩效监控理论开辟了新途径,通过结合连续的人机交互任务和对 ErrP 复合物而非单个峰值的分析。
作为中枢神经系统的常驻免疫细胞(CNS),小胶质细胞不断调查其微疫苗。1-4小胶质细胞永久扩展并缩回其过程不断改变其术语。这种细胞变化很快。例如,3-5分钟的全球缺氧可以产生明显的小胶质细胞形态改变。5在不同的皮质区域以及同一区域之间的小胶质细胞异质症,6使得很难在早期病理状况下可能会发生生理学和任何造成物质之间的形态差异。7,8除了它们在突触修剪中的作用9-12,其中形态学变化是其吞噬功能的一种结合,与炎症条件相比,CNS 13-15中小胶质细胞形态的生理变化动力学知之甚少。基本问题,例如,在整个生命周期中维持小胶质群的机械性是什么以及细胞增殖动力学是什么,但仍未得到答复。到目前为止,一般共识是在生理条件下,小胶质细胞的人口通过局部克隆膨胀来维持一生。16,17然而,一些研究表明,通过强烈的细胞增殖,在一个人的寿命18中逐渐恢复了几次,而没有循环的单核细胞/巨噬细胞浸润。19命中图研究假设,CNS募集的单核细胞衍生巨噬细胞可以在某些生理条件下区分小胶质细胞,并保留其独特的身份。20,21,在微神经胶质耗竭后,通过剩余的残留小胶质细胞进行重生,而不是通过外周巨噬细胞进行重生。22,23
在健康人类志愿者中评估了经颅聚焦超声 (FUS) 刺激初级躯体感觉皮层及其丘脑投射(即腹后外侧核)对脑电图 (EEG) 反应产生的影响。刺激与非惯用手相对应的单侧躯体感觉回路会在所有参与者中产生脑电图诱发电位;然而,并非所有感知到的刺激都会产生手的触觉。这些 FUS 诱发的脑电图电位 (FEP) 是从两个大脑半球观察到的,与正中神经刺激的躯体感觉诱发电位 (SSEP) 有相似之处。与使用 1 和 2 毫秒 PD 相比,使用 0.5 毫秒脉冲持续时间 (PD) 超声处理(占空比为 70%)可在超声处理同侧半球引发更明显的 FEP 峰值特征。尽管一些参与者报告听到了与 FUS 刺激相关的音调,但根据对音调刺激(模仿与 FUS 刺激相同的重复频率)的听觉诱发电位 (AEP) 的单独测量,观察到的 FEP 不太可能与听觉混淆。与丘脑刺激相关的静息态功能连接 (FC) 的离线变化表明,FUS 刺激增强了感觉运动和感觉整合区域网络的连接,这种变化至少持续一个多小时。临床神经学评估、EEG 和神经解剖 MRI 未发现超声处理的任何不良或意外影响,证明了其安全性。这些结果表明,FUS 刺激可能在人类体内诱导长期神经可塑性,表明其对各种神经和神经精神疾病具有神经治疗潜力。
当我们与物体互动时,我们依靠手部发出的信号来传达有关物体及其互动的信息。这些互动的一个基本特征是手与物体接触的位置,而这通常只能通过触觉获得。大脑控制的仿生手与物体接触位置的信息可以通过体感皮层 (S1) 的皮层内微刺激 (ICMS) 发出信号,从而引起位于特定皮肤区域的触觉。为了提供直观的位置信息,机械手上的触觉传感器通过电极驱动 ICMS,这些电极在与传感器位置匹配的皮肤位置引起感觉。这种方法要求 ICMS 引起的感觉是局部的、稳定的,并分布在手上。为了系统地研究 ICMS 引起的感觉的定位,我们分析了 ICMS 引起的感觉的投影场 (PF) - 它们的空间范围 - 这些报告来自三位在 S1 中植入微电极阵列的参与者多年来获得的报告。首先,我们发现 PF 的大小在不同电极之间差异很大,在电极内高度稳定,分布在每个参与者手的大片区域,并且随着 ICMS 的幅度或频率增加而增大。其次,虽然 PF 位置与刺激电极附近神经元的受体场 (RF) 位置相匹配,但 PF 往往会被相应的 RF 所取代。第三,多通道刺激产生的 PF 反映了组成通道的 PF 的结合。通过具有大量重叠 PF 的电极进行刺激,我们可以唤起一种主要在组成 PF 交叉点处体验到的感觉。为了评估这种现象的功能后果,我们在仿生手中实现了基于多通道 ICMS 的反馈,并证明产生的感觉比通过单通道 ICMS 引起的感觉更易于定位。
手动相互作用与对象相互作用受到手的触觉信号的支持。这种触觉反馈可以通过体感皮质(S1)的心脏内微刺激(ICM)在脑控制的仿生手中恢复。在基于ICMS的触觉反馈中,可以通过基于仿生手上力传感器的输出调节刺激强度来发出接触力,这又调节了感知的感觉的幅度。在本研究中,我们在三名参与者中衡量了基于ICMS的力反馈的动态范围和精度,这些参与者植入了S1中的微电极阵列。为此,我们测量了由于ICM振幅增加以及参与者区分不同强度水平的能力而导致的感觉幅度的增加。然后,我们通过实施“仿生” ICMS培训来评估是否可以提高反馈的忠诚度,旨在唤起神经元活动的模式,这些模式更紧密地模仿那些自然接触的人,并一次通过多个通道传递ICMS。我们发现,多通道仿生ICMS产生的感觉比单通道对应物更强,更有区别。最后,我们用仿生手实施了仿生多通道反馈,并让参与者执行合规性歧视任务。我们发现,仿生多通道触觉反馈对单渠道线性对应物产生了改善的歧视。我们得出的结论是,多通道仿生的ICMS传达了精细分级的力反馈,该反馈更接近自然接触所赋予的灵敏度。
当前 SARS-CoV-2 冠状病毒感染大流行凸显了控制措施对于对抗由空气传播的病原体引起的感染的重要性。非特异性作用包括通过针对特定病原体结构成分的化学或物理方法灭活微生物的各种手段。将病毒和细菌暴露在高温下是消除其有害潜力的有效方法之一。使用暴露于高温的人腺病毒 5 模型,随后在 A549 细胞中进行病毒体外滴定,我们发现在 100°C 以上的温度下热处理 5 秒后病毒滴度急剧下降。为了验证在封闭环境中热灭活的潜力,我们构建并测试了一种大容量病原体清洁装置的原型。在 226 立方米的房间中以 900 立方米/小时的空气流速使用该装置 2 小时,可使房间内所有收集点的空气中微生物总数减少 50% 以上。
摘要简介:糖尿病是一种慢性代谢疾病,其中对血液水平的控制不足。无论糖尿病的特定类型如何,并发症都涉及:微血管,大血管和神经性。糖尿病神经病会导致脚下失去感觉,下肢,疮,溃疡和感染因感觉受损而燃烧或射击疼痛。神经损伤还导致平衡和协调的问题增加,导致跌倒的风险增加。方法:在这项研究中,总共选择了30例糖尿病神经病患者,并通过以任务为导向的训练方案训练了4周。 使用活动特异性平衡量表,远端前置感受测试和下肢功能量表评估活动特定的平衡,本体感受和下肢功能。 结果:活动特定的平衡,本体感受和下肢功能显着改善(p <0.0001)。 分析表明,以任务为导向的训练有效地改善了糖尿病神经病患者的活动特定平衡,本体感受和下肢功能。 结论:为糖尿病神经病患者设计的面向任务的培训计划已被证明是有效的。 关键字:[糖尿病神经病,以任务为导向的训练,下肢功能,特定的平衡,本体感受,平衡]引言糖尿病是一种慢性代谢疾病,其特征是由于缺陷胰岛素的分泌,胰岛素吸收或两者。 (1)标记的症状方法:在这项研究中,总共选择了30例糖尿病神经病患者,并通过以任务为导向的训练方案训练了4周。使用活动特异性平衡量表,远端前置感受测试和下肢功能量表评估活动特定的平衡,本体感受和下肢功能。结果:活动特定的平衡,本体感受和下肢功能显着改善(p <0.0001)。分析表明,以任务为导向的训练有效地改善了糖尿病神经病患者的活动特定平衡,本体感受和下肢功能。结论:为糖尿病神经病患者设计的面向任务的培训计划已被证明是有效的。关键字:[糖尿病神经病,以任务为导向的训练,下肢功能,特定的平衡,本体感受,平衡]引言糖尿病是一种慢性代谢疾病,其特征是由于缺陷胰岛素的分泌,胰岛素吸收或两者。(1)标记的症状(1)糖尿病的发病机理包括胰腺的β细胞的自身免疫性破坏,随之而来的胰岛素缺乏到异常,导致对胰岛素作用的抗性。(1)这会导致胰岛素作用对靶组织的作用不足,导致碳水化合物,脂肪和蛋白质代谢异常。
在真核生物中,已报道并深入研究了数百万个从腺苷(A)到肌苷(I)的 RNA 编辑事件;然而,在原核生物中,许多特征和功能仍不清楚。通过结合 PacBio Sequel、Illumina 全基因组测序和两种具有不同毒力的肺炎克雷伯菌菌株的 RNA 测序数据,总共鉴定了 13 个 RNA 编辑事件。重点关注 badR 的 RNA 编辑事件,该事件在两种肺炎克雷伯菌菌株的编辑水平上有显著差异,预测为一个转录因子。在 DNA 上突变一个硬编码的 Cys 以模拟完全编辑 badR 的效果。转录组分析发现细胞群体感应(QS)途径是最显著的变化,表明 RNA 编辑对 badR 的动态调控与协调的集体行为有关。事实上,当细胞达到稳定期时,检测到自诱导物 2 活性和细胞生长的显著差异。此外,在 Galleria mellonella 感染模型中,突变菌株的毒力明显低于 WT 菌株。此外,badR 的 RNA 编辑调控在肺炎克雷伯菌菌株中高度保守。总体而言,这项工作为细菌的转录后调控提供了新的见解。
摘要:群体感应 (QS) 是一种细胞间通讯机制,可调节细菌致病性、生物膜形成和抗生素敏感性。在已鉴定的群体感应中,AI- 2 QS 存在于革兰氏阴性菌和革兰氏阳性菌中,并负责跨物种通讯。最近的研究强调了磷酸转移酶系统 (PTS) 与 AI-2 QS 之间的联系,这种联系与 HPr 和 LsrK 之间的蛋白质-蛋白质相互作用 (PPI) 有关。在这里,我们首先通过分子动力学 (MD) 模拟、虚拟筛选和生物测定评估发现了几种针对 LsrK/HPr PPI 位点的 AI-2 QSI。在购买的 62 种化合物中,八种化合物在基于 LsrK 的测定和 AI-2 QS 干扰测定中表现出显着的抑制作用。表面等离子体共振 (SPR) 分析证实,命中化合物 4171-0375 特异性结合 LsrK-N 蛋白(HPr 结合域,KD = 2.51 × 10 − 5 M ),因此与 LsrK/HPr PPI 位点结合。结构-活性关系 (SAR) 强调了与疏水口袋的疏水相互作用以及与 LsrK 关键残基的氢键或盐桥对于 LsrK/HPr PPI 抑制剂的重要性。这些新的 AI-2 QSI,尤其是 4171-0375,表现出新颖的结构、显著的 LsrK 抑制作用,适合进行结构修饰以寻找更有效的 AI-2 QSI。