摘要 本体感觉,即对身体位置、运动和相关力量的感觉,尽管在运动中起着至关重要的作用,但仍未得到充分理解。大多数对体感皮层本体感觉区域 2 的研究只是将神经元活动与手在空间中的运动进行比较。使用运动跟踪,我们试图通过描述 2 区活动与整个手臂运动的关系来阐述这种关系。我们发现,与经典模型不同,整个手臂模型成功地预测了猴子在两个工作空间中伸手触及目标时神经活动特征的变化。然而,当我们随后在主动和被动运动中评估这个整个手臂模型时,我们发现许多神经元在两种条件下都不能一致地代表整个手臂。这些结果表明 1) 2 区中的神经活动包括伸手过程中整个手臂的代表,2) 这些神经元中的许多在主动和被动运动期间以不同的方式代表肢体状态。
最近的研究表明,体感皮层参与运动学习和保留率。但是,其贡献的性质尚不清楚。一种可能性是,运动过程在运动过程中暂时参与。或者,可能会有持久的学习 - 相关的变化,这将表明在学习运动的编码中有感觉参与。这些可能性是通过在学习后破坏体感皮质来解散的,从而针对学习可能发生的相关变化。如果对体感皮质的变化有助于保留,这实际上意味着新学习的运动的各个方面是在那里编码的,那么一旦学习完成,该领域的瓦解就会导致损害。参与者在接收旋转的视觉反馈时进行了动作培训。将原发性运动皮层(M1)和一级体感皮质(S1)靶向连续的theta爆发刺激,而枕皮层的刺激则用作对照。使用主动运动繁殖或识别测试评估保留率,该测试涉及机器人产生的被动运动。体感皮质的破坏在两次测试中都会导致运动记忆受损。抑制运动皮层对保留没有影响,如对照和运动皮层条件中可比的保留水平所示。效果是在学习具体的。在训练后,将刺激应用于S1时,并没有改变反馈,运动方向,主要因变量。因此,体感皮层是有助于保留的电路的一部分,与新知识的运动(可能学习)的各个方面 - 更新的感觉状态(新的感官目标)可能用于指导运动,可以在那里编码。
随着大地数据和遥感技术迅速发展,遥感映射技术现在已广泛应用于各种领域,包括生态环境监测,农业和林业资源调查,城市规划和管理以及社会经济衡量标准。遥感智能映射(RSIM)是用于数据处理,科学发现和全面应用的新领域,它整合了人工智能,云计算,大数据分析和多学科知识,以增强遥感信息的深入水平,以解决全球环境问题的能力。
当我们与物体互动时,我们依靠手部发出的信号来传达有关物体及其互动的信息。这些互动的一个基本特征是手与物体接触的位置,而这通常只能通过触觉获得。大脑控制的仿生手与物体接触位置的信息可以通过体感皮层 (S1) 的皮层内微刺激 (ICMS) 发出信号,从而引起位于特定皮肤区域的触觉。为了提供直观的位置信息,机械手上的触觉传感器通过电极驱动 ICMS,这些电极在与传感器位置匹配的皮肤位置引起感觉。这种方法要求 ICMS 引起的感觉是局部的、稳定的,并分布在手上。为了系统地研究 ICMS 引起的感觉的定位,我们分析了 ICMS 引起的感觉的投影场 (PF) - 它们的空间范围 - 这些报告来自三位在 S1 中植入微电极阵列的参与者多年来获得的报告。首先,我们发现 PF 的大小在不同电极之间差异很大,在电极内高度稳定,分布在每个参与者手的大片区域,并且随着 ICMS 的幅度或频率增加而增大。其次,虽然 PF 位置与刺激电极附近神经元的受体场 (RF) 位置相匹配,但 PF 往往会被相应的 RF 所取代。第三,多通道刺激产生的 PF 反映了组成通道的 PF 的结合。通过具有大量重叠 PF 的电极进行刺激,我们可以唤起一种主要在组成 PF 交叉点处体验到的感觉。为了评估这种现象的功能后果,我们在仿生手中实现了基于多通道 ICMS 的反馈,并证明产生的感觉比通过单通道 ICMS 引起的感觉更易于定位。
在健康人类志愿者中评估了经颅聚焦超声 (FUS) 刺激初级躯体感觉皮层及其丘脑投射(即腹后外侧核)对脑电图 (EEG) 反应产生的影响。刺激与非惯用手相对应的单侧躯体感觉回路会在所有参与者中产生脑电图诱发电位;然而,并非所有感知到的刺激都会产生手的触觉。这些 FUS 诱发的脑电图电位 (FEP) 是从两个大脑半球观察到的,与正中神经刺激的躯体感觉诱发电位 (SSEP) 有相似之处。与使用 1 和 2 毫秒 PD 相比,使用 0.5 毫秒脉冲持续时间 (PD) 超声处理(占空比为 70%)可在超声处理同侧半球引发更明显的 FEP 峰值特征。尽管一些参与者报告听到了与 FUS 刺激相关的音调,但根据对音调刺激(模仿与 FUS 刺激相同的重复频率)的听觉诱发电位 (AEP) 的单独测量,观察到的 FEP 不太可能与听觉混淆。与丘脑刺激相关的静息态功能连接 (FC) 的离线变化表明,FUS 刺激增强了感觉运动和感觉整合区域网络的连接,这种变化至少持续一个多小时。临床神经学评估、EEG 和神经解剖 MRI 未发现超声处理的任何不良或意外影响,证明了其安全性。这些结果表明,FUS 刺激可能在人类体内诱导长期神经可塑性,表明其对各种神经和神经精神疾病具有神经治疗潜力。
保留所有权利。未经许可不得重复使用。永久。预印本(未经同行评审认证)是作者/资助者,他已授予 medRxiv 许可,可以在此版本中显示预印本。版权所有者于 2020 年 1 月 27 日发布此版本。;https://doi.org/10.1101/2020.01.21.20018341 doi: medRxiv preprint
摘要 目的 人们投入了大量资源,通过提供非自然形式的体感反馈来增强假肢的控制和可用性。在本文中,我们研究了远程控制假肢的身体部位的内在体感信息是否可以被运动系统利用来支持控制和技能学习。 方法 在安慰剂对照设计中,我们使用局部麻醉来减弱大脚趾的体感输入,同时参与者学习通过压力传感器操作脚趾控制的手动佩戴的机器人额外手指。将运动学习结果与接受假麻醉的对照组进行比较,并在三种不同的任务场景中进行量化:与生物手指隔离操作、同步协调操作和协作操作。 主要结果 两组都能够学会操作机器人额外手指,大概是因为视觉反馈和其他相关的感官提示非常丰富。重要的是,远端身体控制器提供的位移体感提示有助于获得独立的机器人手指运动、保持和转移同步手部机器人协调技能以及在认知负荷下的表现。当任务涉及与生物手指的密切协作时,脚趾麻醉不会损害运动表现,这表明运动系统可以通过动态整合来自多个甚至远端身体部位的任务内在体感信号来弥补感觉反馈差距。意义总之,我们的研究结果表明,除了人工刺激之外,还有多种自然途径可以提供内在替代体感信息来支持对人造身体部位的运动控制。
前言................................................................................................................................................ xvii