摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
光纤激光器引起了人们的想象,因为在短期内需要光束组合的功率高达 100kW,在未来则需要多 MW。它们近乎完美的光束质量、稳定性和多功能性,再加上增益介质的低成本,使它们成为相干组合多达 1000 个单独光纤放大器光束的理想选择。使用源自电信的光纤电路,我们可以设想全光纤激光电路和系统,它们坚固耐用、易于运输,并且可以直接管理热负荷。后一个属性来自大的表面积与体积比、光纤激光器的效率和二氧化硅的热稳定性。对于坚固的单个光纤激光发射器来说,几千瓦可能是实用可靠的最佳点,我们需要考虑光束组合以缩放功率,无论是空间、波长还是相干。相干光束组合(如在合成孔径雷达中)具有可操纵性和内置自适应光学的属性。然而,顾名思义,我们需要从每个光纤发射器以稳定的偏振光束输出相干的单频,这并不简单。本文将回顾高功率单频激光器的进展,以及该技术的预期局限性。本文还将回顾高功率脉冲光纤激光器的最新研究,以及光束组合的前景,以克服由于光纤束尺寸小而导致的脉冲能量限制
2D 过渡金属二硫属化物 (TMDC) 是原子级厚度的半导体,在晶体管和传感器等下一代光电应用方面具有巨大潜力。它们的大表面体积比使其节能,但也对物理化学环境极为敏感。在预测电子行为(例如其能级排列)时必须仔细考虑后者,这最终会影响器件中的电荷载流子注入和传输。这里展示了局部掺杂,从而通过化学工程改造支撑基板的表面来调整单层 TMDC(WSe 2 和 MoS 2)的光电特性。这是通过使用两种不同的自组装单层 (SAM) 图案的微接触印刷来装饰基板来实现的。SAM 具有不同的分子偶极子和介电常数,显著影响 TMDC 的电子和光学特性。通过分析(在各种基底上),可以确认这些影响完全来自 SAM 和 TMDC 之间的相互作用。了解 TMDC 所经历的各种介电环境可以建立电子和光学行为之间的关联。这些变化主要涉及电子带隙宽度的改变,可以使用肖特基-莫特规则计算,并结合 TMDC 周围介质的屏蔽。这些知识可以准确预测单层 TMDC 的(光)电子行为,从而实现先进的设备设计。
本研究的目的是调查将聚氯乙烯 (PVC) 废料用作混凝土制造材料而无需预处理的可能性。目的还在于通过在混凝土中稳定和固化 PVC 废料,为限制环境污染和自然资源开发做出贡献。本实验研究的目的是通过与普通混凝土 (OC) 进行比较,通过实验评估 PVC 混凝土的新鲜和固化性能。本研究包括收集 PVC 废料,尤其是自然界废弃的旧 PVC 管,并通过用不同体积比 (5%、10% 和 15%) 的沙子替代将其掺入混凝土中。在本研究中,考虑了两种不同形状 (纤维和细) 的 PVC。根据测试结果,在混凝土中添加 PVC 废料作为天然沙子的部分替代品会降低新鲜混凝土的可加工性。我们注意到,与细 PVC 混凝土相比,含有 PVC 纤维的混凝土的可加工性较低。我们还观察到 PVC 纤维提高了混凝土的抗压强度。随着 PVC 废料的替代率增加,抗压强度也随之增加。然而,细 PVC 比例的增加会导致抗压强度下降。对于 PVC 纤维含量高且 PVC 细度适中的混凝土混合物,可以获得更好的机械性能系数 (MPF)。收集的结果将为回收混凝土混合物中的 PVC 废料提供有用的信息。
是由最近提出的镍3 ni 2 o 7交替交替的单层三层堆叠结构的动机,我们使用从头开始和随机相近似技术全面研究了该系统。我们的分析揭示了这种新颖的LA 3 Ni 2 O 7结构与其他Ruddlesden-Popper镍超导体(例如类似的电荷转移差距值和E G轨道的轨道选择性行为)之间的相似性。压力主要增加了ni g波段的带宽,这表明这些E G状态的巡回特性提高了。通过将细胞体积比0从0.9更改为1.10,我们发现La 3 Ni 2 O 7中的双层结构总是比单层三层堆叠LA 3 Ni 2 O 7具有低的能量。此外,我们观察到从三层到单层sublattices的“自我兴奋剂”效应(与整个结构的每个位置的平均每个位置的1.5电子相比,相比之下),通过总体电子掺杂,这种效果将增强。此外,我们发现了一个限制在单层的d x 2 -y 2波配对状态。由于单层之间的有效耦合非常弱,因此由于中间的非耐受性三层,这表明该结构中的超导过渡温度t c应远低于双层结构中。
冷原子对于精度原子应用至关重要,包括时间保存和传感。用于产生冷原子云的3D磁光陷阱(3D-mot)将受益于光子波导集成,以提高可靠性并降低尺寸,重量和成本。这些陷阱需要将多个大面积,准直的激光束传递到原子真空电池。迄今为止,使用集成波导方法的光束传递仍然难以捉摸。我们使用光纤耦合的光子积分电路报告了87 RB 3D-MOT的演示,以使所有必要的光束在冷却和捕获超过5 x 10 6原子的冷却和捕获量超过200μk的捕获体积,该捕获体积比等效原子数差异差异递增的数量级。氮化硅光子电路转化了纤维耦合的780 nm冷却,并通过波导将光线降低到三个正交的非差异2.5 mm x 3.5 mm x 3.5 mm自由空间冷却,并直接将光束直接接口到苏比德池。这种完整的平面,CMOS铸造 - 兼容的集成梁输送与其他组件(例如激光器和调节器),有希望的冷原子应用系统固定溶液。
图1。双分子反应系统分为两个阶段。(a)双分子反应a + b→c在两个相的速率常数两个相的模型中进行建模。所有分子都可以在两个阶段之间自由传播。(b)我们在模拟中改变了分区系数(𝐾)和体积比(𝑅)。(c)顶部:组件的更高分配加速反应(𝑅= 100)。底部:反应速率在非常小的凝聚力体积(𝐾= 10)的单相中收敛到单相的速率。(d)对于集合,当两相系统中的简单反应的相对速率增强(K两相 / k单相)当等于𝐾𝐾时是最佳的。插图显示了最大速率的最大速率与𝐾𝐾的𝑅。(e)对于较高的𝐾𝐾的值,反应的速率始终更高。较大的隔室对较小的𝐾𝑃的反应更大,而较小的隔室对于较高的𝐾𝑃的增加较大。(f)在𝑅=𝐾𝐾𝐾𝐾𝐾密集和稀阶段中包含相等量的反应物。(g)全范围和𝐾𝐾的整体速率增强的热图。
全球人口增长、经济扩张和气候变化使水资源短缺成为日益复杂的挑战。需要先进的废水处理或净化系统,以可扩展、可靠、经济高效和可持续的方式生产清洁水。由于二维材料具有卓越的品质和独特的结构,其最新发展为解决水净化这一巨大问题提供了一条新途径。新兴的二维材料具有前所未有的表面体积比,包括石墨烯、氧化石墨烯、MXenes、硼碳氮化物、gC 3 N 4、金属有机骨架和黑磷,它们在水清洁和监测方面具有极低的材料消耗、极快的处理时间和极高的处理效率。本综述将重点介绍二维材料的最新进展及其在废水处理中的污染物检测、分离、吸附和光催化中的应用。由于二维材料具有高导电性、亲水性和催化活性等独特品质,人们对其在水处理和环境修复中的潜在用途产生了浓厚的研究兴趣。本综述还将提供有关二维材料在水净化领域作为吸附剂、脱盐、光降解和催化活性的合成和用途的信息。综述最后概述了新的研究途径,并展望了这一发展领域面临的困难。关键词:二维材料、废水处理、吸附、光催化过程。
纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
疟疾是由疟原虫在患者中的快速增殖而引起的,疾病的严重程度与循环中感染的红细胞数量相关。红细胞内的寄生虫乘以分数称为精神分裂,并通过非典型多核细胞分裂模式发生。调节单个祖细胞产生的子细胞数量的机制知之甚少。,我们使用超分辨率的延时显微镜来量化恶性疟原虫和诺尔斯氏菌中的核繁殖动力学,研究了基本的调节原则。这证实了子细胞的数量与一个模型一致,在该模型中,反机制调节乘法但与计时器机制不相容。p。核分裂开始时恶性细胞体积与最终的子细胞数量相关。随着精神分析的进行,核细胞质体的体积比(迄今为止都被发现在所有真核生物中都恒定,显着增加,可能是为了适应指数的多层核。通过稀释培养基来耗尽营养,导致寄生虫产生较少的植物,减少增殖,但在精神分裂症结束时不会影响细胞体积或总核体积。我们的发现表明,与疟原虫寄生虫增殖有关的反机制整合了细胞外资源状态,以修改血液阶段感染期间的后代数量。