Eduardo Mondlane大学(UEM)与莫桑比克农业研究所(IIAM)合作,高等理工学院加沙和曼尼卡的理工学院以及几家农业机构,主持人,主持人,从2024年9月16日至19日,在非洲造物科学会议上,``13 the Inter Intriunt of Andriva)''转换,韧性和包容性”。这是一项国际和跨学科的活动,将来自国家,非洲和国际农业部门的研究人员,学生,农民,企业家,发展代理和政策制定者汇集在一起,以分享,辩论,反思,反思和对话。
学期学时20学期 - VI课程代码课程类型学会时间HQ-006古兰经强制性的翻译1 Chem-319物理化学I-I(化学动力学)强制性2 Chem-320物理化学化学(体温动力学)强制性2化学-321物理化学实验室强制性化学1 Chemistory 1 Chemistor 1 Chemistor 1 Chemistor 1 Comportor 2 Comprions 2 Comportion 1 Chemistor 1 Comportor 2 Comistry 1 Comportor 2 Cosistry 2 Comistry 1 Chemistry 1 Comportion 2 Comistor 2 Chem-323 Inorganic Chemistry-II (f-block elements) Compulsory 2 Chem-324 Inorganic Chemistry Lab Compulsory 1 Chem-325 Organic Chemistry-I (Reaction Mechanisms-I) Compulsory 2 Chem-326 Organic Chemistry-II (Spectroscopy) Compulsory 2 Chem-327 Organic Chemistry Lab Compulsory 1
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
1 柑橘研究中心“Sylvio Moreira” - 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 - 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
也值得注意的是,该国依赖于各种生物技术商品的进口,例如玉米和大豆,这些商品是当地牲畜和家禽行业的关键宏观收益。停止进口这些商品将对这些重要部门产生重大影响,从而提供菲律宾人每日蛋白质需求的主要部分。此外,如果由于缺乏许可证,交易成本增加以及由于与菲律宾交易的风险不断增长的风险越来越高,如果取消货物,国际贸易体系的信誉可能会掩盖该国在国际贸易体系中的信誉。
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
1 柑橘研究中心“Sylvio Moreira” – 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 – 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
结果和讨论:结果表明,随着温度与最佳生长条件紧密对齐,11月1日的播种产生了1446 kg ha -1的最高种子产量。藜麦的干旱耐受性意味着灌溉能够维持农作物的生长和产量。虽然农作物对更高的n剂量做出了积极反应,但研究发现,考虑到浅层底层土壤条件和潜在的住宿问题,使用100 kg n ha -1是最佳的。此外,水生产率,蛋白质和皂苷含量反映了与种子产量相似的趋势。结果表明,早期播种,40%ET C和100 kg N HA -1的灌溉产生的种子产量为1446 kg ha -1,表现出较高的碳效率和可持续性,同时最小化n 2 O发射。但是,这些策略应针对特定的生态条件量身定制。总体而言,该发现证实了印度2600万公顷浅层玄武岩穆拉姆土壤中藜麦的耕种潜力,在那里其他作物可能不会在经济上繁衍生息。