无人管理的水下车辆通常部署在深海环境中,这些环境呈现出独特的工作条件。锂离子电池对于为水下车辆供电至关重要,至关重要的是要准确预测其剩余使用寿命(RUL)以保持系统的可靠性和安全性至关重要。我们提出了一个基于完整集合经验模式分解的残留寿命预测模型框架,并具有自适应噪声 - 时空卷积网(Ceemdan-TCN),该卷积网(Ceemdan-TCN)利用了扩张的因果汇报来提高模型捕获局部容量再生的能力,并增强了整体预测准确性。ceemdan被用来确定数据并防止由局部再生引起的Rul预测错误,并利用特征扩展来扩展原始数据的时间维度。NASA和CALCE电池容量数据集用作训练网络框架的输入。输出是当前预测的剩余容量,它与实际剩余电池容量进行了比较。MAE,RMSE和RE用作RUL预测性能的评估索引。在NASA和CACLE数据集上验证了所提出的网络模型。评估结果表明,我们的方法具有更好的寿命预测性能。同时,证明特征扩展和模态分解都可以提高模型的概括能力,这在工业场景中非常有用。
对于锂离子(锂离子)电池,诸如材料老化和容量衰减之类的问题会导致电池性能降解甚至灾难性事件。预测剩余的使用寿命(RUL)是指示锂离子电池健康的有效方法,这有助于提高电池动力系统的可靠性和安全性。我们提出了一个新型的神经网络Attmoe,该网络将注意力机制与专家(MOE)的混合物结合在一起,以捕获电池RUL预测的容量淡出趋势。面对从传感器收集的原始数据始终充满噪音的问题时,Attmoe使用辍学掩码来代替原始数据。为了进行RUL预测,一个关键思想是,注意机制捕获了序列中的元素和更多注意力之间的长期依赖性,这是对包含更多降级信息的重要特征。另一个关键思想是,MoE使用许多专家来提高模型能力以实现更好的表示。最后,我们使用两个公共数据集进行了实验,以表明ATTMOE在RUL预测中有效,并且在相对误差方面提高了10%–20%。我们的项目都是开源的,可在https://github.com/xiuzezhou/rul上找到。
重型机械的维护是任何制造过程的最关键因素之一,这仅仅是因为以最佳的操作效率保持运行时。维护工程师基于日常操作计划的工作订单严格参与各种计划的维护。预防性,纠正性,预定,基于条件和反应性是通常维护的维护工作单的不同类型。但是,随着物联网(物联网)传感器和算法的出现,以及最先进的技术,许多组织正在采用预测性维护来预先确定维护需求。此外,采用下一代AI(人工智能)技术,可以提前估算操作机器的寿命。
随着电动汽车(EV)的采用加速,对生命后锂离子(Li-ion)电池的有效管理成为一个紧迫的关注点。此案例研究调查了重型车辆行业领先的制造公司内的锂离子电池的可持续第二寿命方法。采用探索性方法,该研究评估了第二寿命应用的三种不同的循环方法:remanu构成,重新利用和重复使用。基于财务模型和可持续性指标,再制造成为公司最可行和环境可持续的战略。该研究还探讨了补充方法,例如重新利用用于较小功率应用的电池,并在大规模的储能系统(ESS)中重复使用它们。电池第二寿命的监管不一致被确定为广泛实施的重大障碍。这项研究结束了,提倡多利益相关者生态系统方法,并呼吁制定普遍的循环法规来简化锂离子电池的第二寿命。
摘要 — 预测具有有限衰减历史的锂离子电池的剩余使用寿命 (RUL) 至关重要,因为它可以确保及时维护电动汽车并有效重复使用二次电池。考虑到现实的电池运行条件,本文研究了在目标电池衰减历史有限的情况下在部分充电和放电条件下的 RUL 预测。鉴于其能够告知特征重要性,采用随机森林来帮助对不同的电池测量进行优先排序,并确定准确预测 RUL 所需的最少运行数据量。通过使用一个完整的充电和放电循环检查预测性能,结果表明充电和放电的持续时间、使用容量和电压信号包含与电池 RUL 相关的重要特征。在荷电状态 (SOC) 不确定性下,还研究了部分充电和放电下的预测性能,结果表明,在 SOC 范围 [0.2,0.8] 内收集的数据可实现令人满意的性能。与现有的使用四个完整充电和放电循环的卷积神经网络方法相比,验证了所提方法增强的板载可行性。对 SOC 范围的敏感性分析表明,SOC 范围 [0 . 1 , 0 . 2] 内的数据包含磷酸铁锂电池最丰富的 RUL 相关信息。对具有不同化学性质、环境温度和 C 速率的电池进行广泛验证进一步证明了所提方法的稳健性。
摘要 - 对剩余使用寿命的预测(RUL)对于各种工业的有效电池管理至关重要,从家用电器到大规模应用。准确的RUL预测提高了电池技术的可靠性和可维护性。然而,现有方法有局限性,包括来自相同传感器或分布的数据的假设,预测生命终结(EOL)以及忽略以确定第一个预测周期(FPC)以识别不健康阶段的开始。本文提出了一种新的锂离子电池预测的新方法。提出的框架包括两个阶段:使用基于神经网络的模型确定FPC,将降解数据分为不同的健康状态,并预测FPC后的降解模式,以将剩余的使用寿命估计为百分比。实验结果表明,所提出的方法在RUL预测方面优于常规方法。此外,提出的方法还显示了对现实世界情景的希望,从而提高了电池管理的准确性和适用性。索引术语 - 有用的寿命预测,锂离子电池,退化建模
第一种方法需要在正常或故障条件下建立系统行为的精确物理模型。当将从传感器捕获的数据与模型的预测进行比较时,可以推断出系统的健康状况。第二种方法使用过去行为的数据来确定当前性能并预测剩余使用寿命 (RUL) (Yakovleva & Erofeev,2015)。物理方法包括失效物理模型。另一种方法是使用简单的裂纹扩展模型来预测受疲劳失效机制影响的系统的 RUL。基于模型的技术需要结合实验、观察、几何和状态监测数据来估计特定失效机制造成的损害。数据驱动技术源自使用历史“运行至失效”(RTF) 数据。这些技术通常用于基于预定失效阈值的估计。可以使用“小波包”分解方法和/或隐马尔可夫模型 (HMM),因为时频特征比单纯的时间变量能提供更精确的结果。然而,使用历史数据预测资产寿命的方法需要了解资产的物理性质(Okoh 等人,2016 年)。数据驱动的 RUL 估算方法是本章的主题。
在这个瞬息万变的时代,限制气候变化和实现可持续增长的迫切需要加强全球能源转型的势头。“氢经济时代”正在走进人类的视野,朝着建立更清洁的能源系统的方向发展[1]。在此背景下,燃料电池被视为最大限度发挥氢能潜在效率优势的首选技术[2]。质子交换膜燃料电池(PEMFC)目前是轻型车辆和物料搬运车辆的领先技术,在固定式和其他应用领域也占有较小份额[3]。然而,成本和耐久性两个主要挑战限制了其大规模商业化[4]。当前PEMFC系统耐久性和可靠性不理想可能导致高维护成本[5],而非优化运行可能是导致意外停机和部件进一步退化的关键原因[6]。人们做出了许多努力来提高其耐久性:改进材料、减少退化原因、改进结构设计、实施新的监督和管理设计等。预测和健康管理 (PHM) 是一门新兴学科,最初源自基于状态的维护 [ 7 ],已被用于监测和预测 PEMFC 系统的健康状况 [ 8 , 9 ]。人们已经研究了针对 PEMFC 的各种预测方法
锂离子电池(LIB)用于为从便携式消费电子设备到电动汽车和网格式储能系统的一系列应用。现在,随着LIB在高功率和复杂应用中的越来越多的应用,预测可靠操作的剩余使用寿命(RUL)并保护电池组免受包括灾难性故障在内的不必要的事件,这是非常重要的。关于RUL的实时信息对于预测电池故障状况至关重要,导致预防有效或至少减少电池故障可能造成的损坏。此外,准确的Rul对于在其使用寿命结束时安排常规维护和必要的更换非常有帮助。因此,RUL预测已成为研究人员兴趣的话题。在过去的十年中提出了几种RUL估计技术,基于机器学习(ML)的技术在准确性,适应性和建模方面表现出了优越性。因此,基于ML的RUL预测方法是根据本文中的基本绩效参数对其基本性能参数进行了全面审查的。还提出了有关问题,挑战,趋势和未来研究范围的详细讨论,以向研究人员提供明确的指南。
锂离子电池是使用最广泛的储能设备,对其剩余使用寿命的准确预测(RUL)对于它们的可靠操作和预防事故至关重要。这项工作彻底研究了基于过去十年中相关论文的客观筛选和统计数据,通过机器学习(ML)算法进行了统治预测的发展趋势,以分析研究核心和未来的改进方向。在本文中还探讨了使用RUL预测结果扩展使用锂离子蝙蝠寿命的可能性。在380篇相关论文中首次确定了用于RUL预测的十种最常用的ML算法。则提出了RUL预测的一般流以及对RUL预测中使用的四种最常用信号预处理技术的深入介绍。公共ML算法的研究核心以计时顺序以统一格式给出。还可以从精确度和特征的各个方面进行比较,以及新颖的和一般的改进方向或机会,包括改进早期预测,局部再生建模,物理信息融合,广义转移学习和硬件实施。最后,总结了电池寿命扩展的方法,并且使用RUL作为延长电池寿命的指示的可行性已被淘汰。电池寿命可以通过根据未来在线的准确的RUL预测结果来优化电荷式服务时间来延长电池寿命。2023作者。本文旨在为电池规则预测和终身扩展策略中ML算法的未来改进提供灵感。科学出版社和达利安化学物理研究所,中国科学院。由Elsevier B.V.和科学出版社出版。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。