AC-DC转换器是电动汽车充电系统中必不可少的组件,可将AC功率从充电站转换为直流电源,可用于为电动汽车的电池充电。转换器通常使用控制功率流量和电压级别的电源电路,从而使充电器可以为电池提供最佳的充电电压和电流。可以将转换器集成到车辆中,也可以作为充电站中的单独组件安装。用于电动汽车应用的AC-DC转换器的设计需要考虑效率,功率密度,可靠性和成本等因素。此外,转换器必须遵守安全法规和标准,以确保充电系统对用户和车辆安全。高级AC-DC转换器技术的开发将在广泛采用电动汽车中发挥关键作用,因为它将更快,更高效,更可靠的充电系统。
AAA 警戒飞机区 AFB 空军基地 AFCEC 空军土木工程中心 AFFF 水成膜泡沫 AOI 关注区域 AOPC 潜在关注区域 BECOS BRAC 环境建设与优化服务 BRAC 基地重新调整与关闭 CERCLA 综合环境反应、补偿与责任法 CSM 概念场地模型 CTS 中央处理系统 DOD 国防部 DERP 国防环境恢复计划 DRMO 防御性再利用营销办公室 EGLE 密歇根州环境、五大湖与能源部 EOD 爆炸物处理 FS 可行性研究 GAC 粒状活性炭 gpm 加仑/分钟 GW 地下水 HPT 水力剖面工具 IRA 临时补救措施 IRP 安装恢复计划 LTM 长期管理 LUC 土地使用控制 MEC 值得关注的弹药与爆炸物
I. 目的。支持实施美国能源部 (DOE) 命令 (0) 452.1《核爆炸和武器保障 (NEWS) 计划》和美国能源部 O 452.4《核爆炸和核武器的安全和使用控制》。根据上级指令的要求,核企业保障 (NEA) 是一项核安全企业 (NSE) 反颠覆计划,旨在防止、检测和/或减轻核武器 (NW) 和 NW 支持能力遭到颠覆的潜在后果,包括可能导致拒绝授权使用 (DAU) 或 NW 可靠性或性能下降的蓄意未经授权行为 (DUA)。联邦和承包商的国家安全实体 (NSE) 组织对现有的和新出现的可信威胁和技术进步进行评估,并实施控制和措施,以管理与 NBA 相关的风险,并确保 NW、NW 支持能力以及 NW 跨领域功能和程序在整个 NW 生命周期中不会受到破坏。
1。确定控制框(1)的位置。它必须与图2中所示的14英寸(356毫米)x 21英寸(533毫米)阴影区域一起放置,以便制作喷头组件的电连接。注意:控制盒电源软管为20英寸。必须考虑壁供应和外壳(1)之间的距离。2。从控制盒盖(2)中卸下胶带,然后拔下盖子(2)。将控制框(1)放在所需的位置,并标记四个安装孔位置,如图所示。注意:找到包含4个M5X16螺钉的塑料袋,用于在安装完成后使用控制盒盖(1)。注意:对于AC安装,请在安装控制框(1)之前进行电源连接。3。建议使用提供的螺钉(3)将控制框(1)固定在墙壁上的墙壁螺柱或横钉。如果要在瓷砖或石膏墙上安装控制框(1),则应使用锚(4)和螺钉(3)。
• 保护现有交通管理局的专项资金 • 提供工具帮助交通机构支持以公共交通为导向的发展 (TOD) 和/或提供资金补充 TOD 融资/公私合作伙伴关系,同时允许城市在发展决策中保持主导地位和地方控制权 • 将大约 8000 万美元的空气质量使用费返还给县用于地方倡议项目 • 与 TxDOT 和立法机构一起审查与成立新的州高速铁路管理局相关的选项 • 为所有用户提高全州交通系统的安全性;降低超速限制,减少鲁莽驾驶,消除酒后驾驶,强制使用安全带;推进 90 英里/小时以上自动测速执法 • 通过技术和电子标牌实现施工区信息传递的现代化;支持施工区的自动测速执法 • 为县和市提供更多的土地使用控制工具,以保护未来的交通走廊和安全需求 根据要求提供证词
摘要 — 评估了 1 µm 间距晶圆对晶圆 (W2W) Cu/SiCN 混合键合界面的电气可靠性。使用控制 IV 方法获取 W2W 混合堆栈的击穿电压分布。假设幂律模型,对使用条件外推可确认使用寿命超过 10 年,当温度低于 175 ◦ C 时,幂律指数高于 10。发现沿 Cu/SiCN 混合键合界面的传导机制为 Poole-Frenkel 发射,能量势垒等于 0.95 eV。仅在温度高于 200 ◦ C 和场高于 1.5 MV/cm 时才能观察到移动铜,证实了该键合界面对铜漂移具有良好的稳定性。索引术语 — 晶圆对晶圆 (W2W) 键合、可靠性、电介质击穿、混合焊盘泄漏。
摘要 - 机器人技术的快速进步需要用于在动态和不确定环境中开发和测试安全控制体系结构的Ro-Bust工具。确保机器人技术的安全性和可靠性,尤其是在关键安全应用中,至关重要,推动了实质性的工业和学术努力。在这种情况下,我们扩展了Python/ROS2工具箱CBF套件,该工具箱现在使用Ax-Avoid规范作为成本函数结合了计划者。与模型预测路径积分(MPPI)控制器的集成使工具箱能够满足复杂的任务,同时确保使用控制屏障功能(CBF)的各种不确定性来源的正式安全保证。CBF试剂盒针对使用JAX进行自动分化的速度和二次程序求解的JAXOPT进行了优化。该工具箱支持各种机器人应用,包括辅助导航,人类机器人相互作用和多机器人协调。该工具箱还提供了全面的计划者,控制器,传感器和估算器实现的库。通过一系列示例,我们证明了在不同机器人方案中CBF套件的增强功能。
摘要 - 当今的许多航空任务是由飞行员和任务专家的异质机组人员完成的。由于完全自动化的飞行员(AP)已集成到航空人员中,因此对于安全保证和误差效率来说,有效的团队将是必要的。这项飞行模拟器研究探索了非驾驶员运营商与AP合作进行海事情报,监视和侦察(ISR)任务之间的团队。该研究比较了航路点AP的行为,需要在飞机控制中进行人工干预,以防止造成损害造成的敌方船只的飞行,并采取碰撞避免行为,在该行为中,AP会主动使用控制屏障功能来主动避开敌方船只。这种主动的AP行为导致飞机损坏较少,但更容易预测的团队绩效,尽管任务时间更长。结果表明,情况意识随着AP复杂度级别和任务负载水平而异。参与者在失败时成功并校准其信任时对AP的积极感知。索引术语 - 自主,自动飞行员,协作,团队,人为因素,ISR,控制障碍功能
他在水上的典型企业旅程始于实施工艺和活动,以管理公司在公司具有高度控制或影响力(通常拥有和运营资产)或直接支出的业务的部分地区。这项早期活动的大部分是由依从性和内部风险减轻驱动的,并且集中在供应链的“顶级”层上。然而,这通常“隐藏”水的真正影响,因为传统的物质方法的框架倾向于使用控制和支出的镜头,这通常优先考虑供应链的“顶级”层,而供应链的“顶级”层通常(通常取决于行业),而(取决于)水不依赖或低影响。随着公司扩大物质的镜头,并更好地了解其运营(通常超出其1层供应商)和水之间的联系,这些公司计划的框架从管理层转移到管理。为什么?因为公司很快意识到他们对盆地一级的共享水资源的控制有限。仅围绕提高的效率和管理层构建的狭窄水计划将不足以减轻由共同的水依赖性驱动的水风险,并且将无法支持业务弹性和连续性,或者利用与水相关的机会。
基于测序的微生物群落分析的方法容易受到污染,这可能掩盖生物信号或产生人为的信号。通常使用控制硅净化方法的方法,但不会最佳地使用跨样品共享的信息,并且不能处理仅部分源自生物材料污染或泄漏到控制中的分类单元。在这里,我们提出了磨砂膏(微生物中污染去除的源跟踪),这是一种硅氧净化方法中的概率,该方法在多个样品和控件上合并了共享信息,以精确识别和去除污染。我们验证了在多个数据驱动的模拟和实验中验证磨砂膏的准确性,包括诱导的污染,并证明它的表现平均比最先进的方法平均高出15-20倍。我们展示了跨多个生态系统,数据类型和测序深度的磨砂膏的鲁棒性。证明其适用于微生物组研究,磨砂膏促进了宿主表型的预测,最值得注意的是使用肿瘤肿瘤微生物组数据的黑色素瘤患者对治疗反应的预测。