第 1 卷子部分 A – 一般规定 将 CS 25.1 修改为:(a) 本适航法规是这些认证规范适用于涡轮驱动的大型飞机。子部分 B — 飞行 将 CS 25.177(c) 修改为:“(c) 在适合飞机运行的侧滑角范围内的直线、稳定侧滑中,但不小于使用一半可用方向舵控制输入或 801 N (180 lbf) 的方向舵控制力所获得的侧滑角,副翼和方向舵控制运动和力必须与稳定的侧滑角基本成比例。;并且比例因子必须位于安全运行所必需的限值之间。评估的侧滑角范围必须包括由以下较小者导致的侧滑角:
图 8.3:横向方向 a = 30° 时计算和测量的响应 T'nne 历史 (a) 侧滑角 (b) 滚动力矩 (c) 偏航力矩 (d) 滚动角 (e) 横向加速度
本文提出了对汽车的稳态转弯平衡的彻底研究。除了对正常驾驶行为做出反应的平衡 - 以下称为稳定的正常转弯外,漂流还吸引了增加的注意力。讨论漂流时,通常假定偏航率和转向角度相反,即驾驶员是反向行驶的,后桥被安装。有趣的是,另一个不稳定的平衡是可观的,此处称为不稳定的正常转弯。在这项工作中,尝试对漂移进行全面定义。提出了一个逆模型来计算以给定半径和侧滑角度执行稳态转弯所需的驱动器输入。通过线性化系统并分析所得状态矩阵的特征值和特征向量来探索所有平衡的数学含义。
摘要:在用于流角估计的合成传感器领域,本研究旨在使用专用技术演示器描述基于物理方法在相关环境中的验证。流角合成解决方案基于无模型或基于物理的方案,因此适用于任何飞行体。演示器还包括物理传感器,这些物理传感器为合成传感器提供所有必要的输入,以估计攻角和侧滑角。评估物理传感器的不确定性预算以破坏飞行模拟器数据,目的是重现现实场景来验证合成传感器。所提出的流角估计方法适用于现代和未来的飞机,例如无人机和城市机动飞行器。本文提出的结果表明,尽管可能会出现一些限制,但所提出的方法在相关场景中仍然是有效的。
摘要:本研究涉及部分基于合成传感器的空气数据系统 (ADS) 的安全性分析。ADS 专为小型飞机运输 (SAT) 社区设计,适用于未来的无人机和城市空中交通应用。ADS 的主要创新在于使用合成传感器代替传统叶片(或传感器)来估计流动角(攻角和侧滑角),而压力和温度则直接用皮托管和温度探头测量。由于空气数据系统是安全关键系统,因此需要进行安全分析,并将结果与飞机集成商要求的安全目标进行比较。本文介绍了应用于部分基于合成传感器的安全关键系统的系统安全评估的常见航空程序。统计估计了 ADS 子部件的平均故障间隔时间,以评估 ADS 功能的故障率。所提出的安全分析还有助于识别最关键的空中数据系统部件和子部件。还确定了为实现非冗余架构的适航安全目标而可能填补的技术差距。
表 1.1:先锋 RQ-2 规格 ...................................................................................... 3 表 2.1 飞机平移和旋转运动的 12 个状态 ........................................................ 6 表 2.2 先锋 Rpv 稳定性和系数 ........................................................................ 8 表 2.3:6DOF 机身四元数块端口描述 [6] ...................................................... 16 表 3.1 平飞条件下的配平参数 ............................................................................. 21 表 3.2 反馈增益值 ............................................................................................. 26 表 5.1 由于升降舵偏转和攻角引起的升力系数 ............................................................. 33 表 5.2 由于升降舵偏转和攻角引起的阻力系数 ............................................................. 34 表 5.3 由于方向舵偏转和侧滑角引起的侧向力系数 ............................................................. 35 表 5.4 由于副翼偏转和攻角 36 表 5.5 升降舵偏转和攻角引起的力矩系数 ...... 37 表 5.6 副翼偏转和攻角引起的偏航力矩系数 38 表 5.7 攻角引起的气动系数及导数 .......................... 39
此次事故发生在一次中等风险飞行品质测试中,飞机超出了飞行包线的边缘。事故飞行员(MP)试图执行稳定航向侧滑(SHSS)以触发咨询警告和预警系统(ACAWS)的方向舵特殊警报。这通常是被禁止的动作,但空军物资司令部(AFMC/A3)作战总监签署了豁免书,批准测试团队以这一限制飞行。MA 超过了 14.5 度的侧滑角(AoS),触发了方向舵特殊警报,并且 AoS 继续增加,直到脱离受控飞行,最终翻滚到倒飞位置。此后不久,MA 从脱离状态恢复,事故副驾驶(MCP)接管控制以从近乎垂直的俯冲中恢复。在起飞和恢复过程中,飞机下降了约 5,000 英尺,经历了 3.19 倍的法向力加速度 (Gs),襟翼超速超过 100 节。超速超过了飞机的 DLL,从而使 MA 失去适航性,导致其完全损毁。
着舰过程最后20秒风险较大,主要是因为舰载空气尾流强烈。据统计,1964年美国舰载着舰事故率白天为0.031%,夜间仅为0.1%,大大超过陆基着舰事故率[8]。另外,考虑到舰载机纵轴与着陆甲板纵轴呈9度左右夹角,飞机需要有一个横向速度来补偿舰载机的横向运动,此时侧滑角β也不为零。在小扰动条件下,对飞机动力学和运动学方程进行线性化,发现纵向和横向变量存在较强的耦合,表明在着舰最后阶段分别采用纵向控制环和横向控制环进行控制并不是有效的方式。飞行器的部分动力学和运动学方程可以写成公式1的形式,这是非线性系统的一种表达。处理非线性系统时,动态逆是一种常用的方法。它可以避免复杂的参数设定和增益调整。只要知道系统的精确数学模型,就可以应用动态逆进行控制[7, 10]。在准确了解飞行器动力学和运动学方程的情况下,动态逆是一种可行的飞行控制方法。( ) ( ) ( )
AD 适航指令 A/M 飞机 ADF 自动测向 [设备] ADS 空中数据系统 AHRS 姿态航向参考系统 AOA 攻角 AOS 侧滑角 AP 自动驾驶仪 APP 进近 ATC 空中交通管制 ATCAS 空中交通管制自动化系统 CAA 民航局 CG 重心 C L 升力系数 DAFCS 数字式自动飞行控制系统 DME 测距设备 EFIS 电子飞行仪表系统 FAA 联邦航空管理局(美国) FDR 飞行数据记录器 FL 飞行高度 FOD 外来物体损坏 FTB 飞行试验台 GNC 引导导航控制 GPS 全球定位系统 IAS 指示空速 ICAO 国际民用航空组织 M 马赫数(= 边界外的流速与当地音速之比,在海平面大约为 340 米/秒) MAC 平均气动弦 (M)MEL(主)最低设备清单 METAR 气象报告 MFC 多功能计算机 NM 海里(= 1.852 米) OAT室外空气温度(°C、°K、°F 外部空气)PF 飞行员飞行