我们将提供空间供您展示您的产品。如有任何疑问或想安排会议,请随时通过 pjbinu@cdac.in 与我们联系,Binu PJ,组织秘书,科学家 E/联合主任,CDAC Trivandrum 健康技术组,电话:9496236198。
交互式聊天机器人应用程序是现代时代的最新发明。医疗保健行业与人际交往密切相关,似乎像聊天机器人这样的对话式人工智能应用程序更为普遍。聊天机器人的响应方式应该让用户感觉自己正在与真人交谈。聊天机器人根据清晰的数据集和可持续的后端逻辑进行响应以生成结果。医疗聊天机器人通过以类似人类的方式与用户互动,简化了医疗保健提供者的工作并有助于提高他们的绩效。医疗保健领域的聊天机器人可能具有为患者提供即时医疗信息、在疾病出现的第一个迹象时推荐诊断或将患者与社区中合适的医疗保健提供者 (HCP) 联系起来的潜力。[3]
“人工智能”(AI)这一术语广泛应用于人类活动的各个领域。但目前对人工智能尚无一个普遍接受的定义。对于一些人来说,人工智能是任何数据处理技术;对于另一些人而言,它是一些能够超越人类智能的人工生命形式。 AI的定义之一是自主性和适应性,即。能够在复杂条件下无需人工不断指导地执行任务,并且能够根据自身经验提高工作效率。也就是说,人工智能应该能够在复杂的环境中执行分配给它的任务,研究它及其行为并尽量减少不利结果的可能性。今天我们可以说,人工智能包括具有一组特定算法的软件工具,这些算法能够像人类一样解决智力问题。人工智能新技术、新成果发展速度飞快,这些技术的应用问题不再是人工智能是否会产生影响,而是“谁、如何、在何地、何时感受到这种影响,是积极的还是消极的”。人工智能在医疗健康领域的发展引发了“人工智能即将取代医生”这一话题的热烈讨论。目前,智能机器完全取代临床医生的可能性不大,但各种人工智能方法正越来越多地被用于支持医疗决策[1,2,3,4]
抽象的大语言模型(LLM)已成为医疗保健领域的变革性工具,在自然语言理解和产生中表现出了显着的能力。然而,它们在数值推理方面的熟练程度,尤其是在临床应用中的高风险领域,仍然没有得到充实的态度。数值推理在医疗保健应用中至关重要,影响患者的结果,治疗计划和资源分配。本研究研究了在医疗保健环境中数值推理任务中LLM的计算准确性。使用1,000个数值问题的策划数据集,包括诸如剂量计算和实验室结果解释之类的现实世界情景,根据GPT-3体系结构进行了精制LLM的性能。该方法包括及时的工程,事实检查管道的集成以及正规化技术以增强模型的准确性和泛化。关键指标(例如精度,回忆和F1得分)用于评估模型的功效。结果表明总体准确性为84.10%,在多步推理中直接的数值任务和挑战方面的性能提高了。事实检查管道的整合提高了准确性11%,强调了验证机制的重要性。这项研究强调了LLM在医疗保健数值推理中的潜力,并确定了进一步完善的途径,以支持临床环境中的关键决策。当它们成为这些发现旨在为医疗保健的可靠,可解释和上下文相关的AI工具做出贡献。关键字大语言模型(LLMS)·变压器架构·及时工程·精确度·精确·回忆·F1-SCORE 1简介大语言模型(LLMS)已成为人工智能领域的重大进步,证明了在处理和生成人类语言中的显着能力。这些模型由深度学习技术提供支持,在广泛的数据集上进行了培训,并有可能了解语言,细微差别和语言的复杂性。
Covid-19的大流行肯定教会了我们许多有价值的教训。它已经证明了生活的脆弱性以及我们将健康视为理所当然的频率。,它还向我们展示了在某些情况发生意外的事情以及与亲人不断沟通的重要性,以便他们了解我们的偏好和护理愿望是多么重要。因此,卫生部确实是及时提高以人为本护理的关注,并在道德和沟通领域提高卫生专业人员的技能和能力,这是整个人类医学实践至关重要的。这一第1版的国家预先护理计划(ACP)指导无疑是朝这个方向前进的重要一步。
摘要:本研究彻底回顾了人工智能(AI)在医疗保健中的应用状态,有关不同疾病类型的AI使用趋势,这些疾病类型和问题妨碍了他们的进一步进展。该研究通过通过PubMed数据库找到有关医疗保健中AI的相关当前文章,使用了文献综述和数据分析。这项工作分析了AI在癌症,心血管疾病和神经系统疾病以及医疗保健现实部署中的瓶颈中的使用。研究结果表明,尽管AI证明了提高诊断精度的潜力,但与数据隐私,道德考虑和模型解释性有关的几个障碍仍然存在。总而言之,本综述对医疗保健中AI应用的当前状态进行了评估,并确定了需要进一步调查的关键领域。通过解决这些挑战,可以更有效地开发和广泛地实施未来的创新,最终有助于AI驱动的医疗保健解决方案的进步和优化。
生活的各个领域的数字化,无论是在工作,在家庭环境中,在个人或公共交通工具中,都在稳步发展。在2018年已经超过了40亿人口的限额。使用手机,目前有76亿人口,目前有76亿人口。超过30亿人使用社交媒体,并在十分之九的情况下通过智能手机这样做(请参阅[GDR18])。这一发展在医疗保健领域仍在继续。从“自我追踪”的趋势开始,但也从有效利用收集的医疗数据的需求增加。尤其是在医疗保健领域,无论您当前的位置和时间如何,都可以访问自己的医疗数据。在这种情况下,后端系统将敏感和个人数据存储从脉冲频率,睡眠节奏记录到药物计划和医疗处方。后端系统将用户与多个服务联系起来,因此充当通信集线器。被妥协的应用程序可以无意间披露用户的整个数字寿命,这可能会导致高财务损失。遵守适当的安全标准,尤其是在后端系统领域,可以降低风险,甚至可能阻止这种风险。已经在开发阶段,制造商应非常负责任地计划后端系统如何处理,存储和保护个人,在这种情况下,医疗和其他敏感数据。
以技术进步和对个性化医疗保健解决方案的需求不断增长的驱动,以患者为中心的医疗保健应用程序市场正在迅速发展。市场是根据应用程序类型进行了细分的,包括药物管理应用程序,远程医疗应用程序,健康监测应用程序以及健康与健身应用程序,每个应用都满足了多样化的患者需求。针对特定的患者群体,这些应用程序支持慢性疾病管理,急性护理,预防性护理,心理健康和小儿护理,改善患者参与度和结果。兼容性在仅iOS,仅Android,跨平台和基于Web的应用程序上有所不同,从而确保跨设备可访问性。此外,无缝数据集成起着至关重要的作用,具有EHR集成,可穿戴设备连接,社交媒体集成和患者报告的结果(PRO)跟踪增强互操作性
随着成年,患有先天性免疫缺陷(又称原发性免疫缺陷)等慢性疾病的青少年必须为从儿科护理转向成人护理的艰难时期做好准备。在慢性病从儿科到成人护理的过渡中,护理的连续性、关系的连续性、信息缺乏和病情的自我管理等挑战现在已成为众所周知的问题(1、2,Padley N、Moubayed D、Lanteigne A、Ouimet F、Clermont MJ、Fournier A 等人。从儿科到成人健康服务的过渡:人类繁荣的愿望和实践。国际质量研究健康福祉杂志(审查中 - 2023 年))。此外,由于缺乏随访和治疗依从性差,青少年在过渡期内容易出现更高的发病率和死亡率(3)。除了医疗转变之外,青少年及其家人还要经历生活中的其他转变,即从青少年到成年的转变,这代表着一系列身体、心理、社会和环境变化。尽管医疗保健转变如今是一个新兴的研究领域,但很少有人关注 IEI。这令人担忧,因为每种慢性病都有不同的治疗要求和临床表现,而这些可能无法在同质的转变过程中得到适应。例如,IEI 具有临床意义,如需要高度专业化的跨诊所护理以及社会心理和认知并发症,这可能会对平稳转变造成额外的障碍。据我们所知,专门研究 IEI 医疗保健转变的研究很少(3-7),其中只有一项研究包括了青少年或其家人的观点(7)。在研究中纳入患者及其家人的观点对于影响制定能够更具体地满足他们需求的计划或程序至关重要。忽视他们的观点可能会导致过渡计划过于以治疗依从性和医疗依从性为中心,而这些优先事项可能与青少年及其家人的需求和价值观不一致,从而导致次优结果 ( 8 )。我们进行了一项定性研究,以更好地了解专门为 IEI 提供门诊护理的免疫学诊所的青少年和父母的观点。我们力求更广泛地了解他们的经历、需求以及他们在从儿科护理过渡到成人护理方面面临的挑战。
