尽管美国已投资于无障碍健康的数据集(例如,我们所有人目前包括近一百万参与者的基因组和临床数据),但需要更多代表性的数据来为所有美国人创建个性化医学。当前数据集的大小不足以发现症状或状况不经常观察到的患者的医学相关模式。有充分的理由相信,从chatgpt到dall-e的生成型AI的课程在其中培训更多的数据导致了极大的结果,同样适用于AI的医疗应用。当我们为医疗保健数据创新AI时,我们必须通过遵循既定的指南和标准(例如,《卫生AI AI的保证标准指南》)来确保质量数据是从个人中提供的。
“人工智能”(AI)这一术语广泛应用于人类活动的各个领域。但目前对人工智能尚无一个普遍接受的定义。对于一些人来说,人工智能是任何数据处理技术;对于另一些人而言,它是一些能够超越人类智能的人工生命形式。 AI的定义之一是自主性和适应性,即。能够在复杂条件下无需人工不断指导地执行任务,并且能够根据自身经验提高工作效率。也就是说,人工智能应该能够在复杂的环境中执行分配给它的任务,研究它及其行为并尽量减少不利结果的可能性。今天我们可以说,人工智能包括具有一组特定算法的软件工具,这些算法能够像人类一样解决智力问题。人工智能新技术、新成果发展速度飞快,这些技术的应用问题不再是人工智能是否会产生影响,而是“谁、如何、在何地、何时感受到这种影响,是积极的还是消极的”。人工智能在医疗健康领域的发展引发了“人工智能即将取代医生”这一话题的热烈讨论。目前,智能机器完全取代临床医生的可能性不大,但各种人工智能方法正越来越多地被用于支持医疗决策[1,2,3,4]
随着基于人工智能 (AI) 的产品和服务在各个行业中激增,一个最重要的问题浮出水面:这些系统应该包括人类还是应该自主运行?这个问题是我们现在认为理所当然的许多服务和产品的基础。例如,考虑使用谷歌地图。我们中的许多人现在都认为这种基于人工智能的服务是理所当然的,当它指引我们从一个地方到另一个地方时,我们几乎不用考虑它会带我们去哪里。这个工具背后没有人类向导或主持人;我们甚至不能像在银行那样打电话,要求找人谈谈走错路或被带到了目的地以外的地方。如果出了问题,没有人可以帮助我们,也没有人可以投诉。
随着成年,患有先天性免疫缺陷(又称原发性免疫缺陷)等慢性疾病的青少年必须为从儿科护理转向成人护理的艰难时期做好准备。在慢性病从儿科到成人护理的过渡中,护理的连续性、关系的连续性、信息缺乏和病情的自我管理等挑战现在已成为众所周知的问题(1、2,Padley N、Moubayed D、Lanteigne A、Ouimet F、Clermont MJ、Fournier A 等人。从儿科到成人健康服务的过渡:人类繁荣的愿望和实践。国际质量研究健康福祉杂志(审查中 - 2023 年))。此外,由于缺乏随访和治疗依从性差,青少年在过渡期内容易出现更高的发病率和死亡率(3)。除了医疗转变之外,青少年及其家人还要经历生活中的其他转变,即从青少年到成年的转变,这代表着一系列身体、心理、社会和环境变化。尽管医疗保健转变如今是一个新兴的研究领域,但很少有人关注 IEI。这令人担忧,因为每种慢性病都有不同的治疗要求和临床表现,而这些可能无法在同质的转变过程中得到适应。例如,IEI 具有临床意义,如需要高度专业化的跨诊所护理以及社会心理和认知并发症,这可能会对平稳转变造成额外的障碍。据我们所知,专门研究 IEI 医疗保健转变的研究很少(3-7),其中只有一项研究包括了青少年或其家人的观点(7)。在研究中纳入患者及其家人的观点对于影响制定能够更具体地满足他们需求的计划或程序至关重要。忽视他们的观点可能会导致过渡计划过于以治疗依从性和医疗依从性为中心,而这些优先事项可能与青少年及其家人的需求和价值观不一致,从而导致次优结果 ( 8 )。我们进行了一项定性研究,以更好地了解专门为 IEI 提供门诊护理的免疫学诊所的青少年和父母的观点。我们力求更广泛地了解他们的经历、需求以及他们在从儿科护理过渡到成人护理方面面临的挑战。
这是一项在尼泊尔加德满都市Chhauni的Shree Birendra医院生物化学系从2022年11月至2023年进行的横断面研究。这项研究是在获得尼泊尔陆军卫生科学研究所(NAIHS)机构研究委员会(Regd No.665)。书面同意是从120名参与者那里获得的,表达了他们参加研究的意愿。在EDTA小瓶和血清分离器管中至少八个小时禁食后收集静脉血液样本。HBA1C。使用COBAS C 311(美国Roche Diagnostics,USA)分析了血清的空腹血糖(FBG),总胆固醇,甘油三酸酯(TG),高密度胆固醇(HDL)和低密度胆固醇(LDL)。通过
复合不同部分。(1)定义。一个不同的部分是一个独特的部分,由两个或多个非连接组件组成,这些部分不在同一校园内,如本章第413.65(a)(2)条所定义的。(2)要求。除了满足本节“不同部分”定义中指定的要求之外,一个综合部分还必须满足以下所有要求:(i)SNF或NF是一个以上一个以上位置的组合,将被视为该机构的一个独特的部分,其部分是不同的部分。因此,综合不同部分将只有一个提供商协议,只有一个提供商号码。(ii)如果两个或多个机构(每个机构都有一个不同的零件SNF或NF)经历所有权的变更,则CMS必须批准现有的SNFS或NFS作为满足要求,然后才被视为单个机构的复合部分。在做出这样的决心时,CMS认为其批准或不赞成复合部分不同的部分会促进无需牺牲护理质量的有效利用公共款项。如果复合零件的所有权变更,则
这些进步发生在卫生系统面临诸多挑战的时候。例如,肥胖和心理健康问题日益严重,尤其是在儿童和年轻人中。我们需要做更多工作来管理健康不平等,消除不必要的差异,满足学习障碍或自闭症患者的健康需求。老年人口的虚弱需要谨慎管理,以防止不必要的住院或治疗。心血管疾病、呼吸系统疾病和癌症仍然是导致
目的:确定家庭医学部门2型糖尿病的受益人自我保健的知识水平33材料和方法:进行了直接调查,以观察性,主动,横向和描述性设计进行。 div>在家庭医学咨询中与患者进行。 div>包括任何年龄段的男人和女人,其中2型糖尿病梅利托斯在访问期间自愿接受调查。 div>计算有限种群的样本量,并通过专家验证了一种仪器,并通过试验测试(α -Crombach = 0.73)。 div>统计分析:定量变量以中央(培养基)和分散度量(范围,标准偏差)和定性百分比表示。 div>知识水平将是定性的:不足,规律和良好。 div>该协议已获得研究和伦理委员会的批准注册R-2020-2804-034。 div>33平均年龄为56.28岁,S = 10,837,范围为28至85岁。 div> 58.5%(n = 121)是女性。 div> 与受益人的教育有关,我们观察到32.9%(n = 68)有高中和22.7%的中学(n = 47)。 div> 考虑受益人评估的成功次数,他们的平均为7.34,s = 2.2,范围为1至12。 知识水平为:以59.9%(n = 124)进行调节,其次是良好的31.9%(n = 66)。 div>33平均年龄为56.28岁,S = 10,837,范围为28至85岁。 div>58.5%(n = 121)是女性。 div>与受益人的教育有关,我们观察到32.9%(n = 68)有高中和22.7%的中学(n = 47)。 div>考虑受益人评估的成功次数,他们的平均为7.34,s = 2.2,范围为1至12。知识水平为:以59.9%(n = 124)进行调节,其次是良好的31.9%(n = 66)。 div>观察到教育水平与知识水平之间存在关联(n = 207,x2,gl = 10,p = 0.005)。 div>在调查结束时,他们问了一个问题,即他们如何看待他们对疾病的控制,而62.3%(n = 129)回答了他们认为这是规律的。 div>
方法论和理论方向:已进行体外、体内和人体临床试验,以评估 ABB C1 对训练免疫力、保护肠道屏障功能和增强疫苗接种效果的影响。体外研究侧重于评估在没有或存在 ABB C1 的情况下 TEER 作为肠道屏障功能的测量。体内研究评估了 ABB C1 刺激小鼠外周血单核细胞、白细胞和腹膜巨噬细胞吞噬的能力,并与已知 β-葡聚糖的阴性对照和两个阳性对照(n = 10 只小鼠/组)进行了比较。这项随机和安慰剂对照临床研究招募了 70 名患者,他们接种了流感疫苗或 Covid-19 疫苗,并补充了 30 天的 ABB C1 或安慰剂。评估了对疫苗接种的免疫反应,以及临床状态和 ABB C1 的安全性和耐受性。发现:ABB C1 在单层细胞自发形成 3 周后,TEER 有所增加,同时在受到大肠杆菌攻击时,上皮细胞不会受到破坏。与对照组相比,ABB C1 显著刺激了吞噬作用,与阳性对照相比,效果更佳。一项人体临床研究发现,ABB C1 是安全的,它改善了对流感和 Covid-19 疫苗的免疫反应、循环中硒和锌的水平,并加速了疫苗接种后抗体的产生。
摘要:本研究彻底回顾了人工智能(AI)在医疗保健中的应用状态,有关不同疾病类型的AI使用趋势,这些疾病类型和问题妨碍了他们的进一步进展。该研究通过通过PubMed数据库找到有关医疗保健中AI的相关当前文章,使用了文献综述和数据分析。这项工作分析了AI在癌症,心血管疾病和神经系统疾病以及医疗保健现实部署中的瓶颈中的使用。研究结果表明,尽管AI证明了提高诊断精度的潜力,但与数据隐私,道德考虑和模型解释性有关的几个障碍仍然存在。总而言之,本综述对医疗保健中AI应用的当前状态进行了评估,并确定了需要进一步调查的关键领域。通过解决这些挑战,可以更有效地开发和广泛地实施未来的创新,最终有助于AI驱动的医疗保健解决方案的进步和优化。
