通过分析叠加、纠缠、化学键合行为和经典力学的基本现象,人们发展出了量子相干性的一般定义。如果原子粒子是物质波,且其光谱范围从相对相干态到退相干态,那么原子的各种性质就可以得到更好的解释。结果表明,如此定义的量子相干性可以全面解释神经元中的信号传输和大脑产生的电场的动态,包括可能支持这样一种说法,即有意识的意志在某种程度上是真实的,而不是一种幻觉。最近的生理研究表明,电磁辐射与分子结构相互作用,形成综合能量场。提出了一种机制,通过该机制,量子相干性作为神经元中的加速电流,可能导致电磁辐射的光谱扩大,这种辐射能够与大脑中的分子复合物相互作用,甚至可能与生物体其他部位的分子复合物相互作用,从而影响振动和结构特性。研究应该调查结果能量场是否是基本的感知基础,该能量场中至少有一些附加电磁波长参与产生图像感知,只要它们来自身体,电磁振动是更多样化现象的特征,通过这种现象,感知的一些非维度特征,如声音、触觉、味觉、嗅觉、内感受等部分产生。如果对大脑的检查发现这个器官是由一个相干场组成的,至少部分是由与分子成分相互作用的电磁辐射的宽谱构成的,那么这对进一步发展我们的物质/思维界面模型以及可能的整体物理现实具有重大意义。
近年来,非互易物理取得了迅速发展,其独特应用包括不受反向作用影响的信号传输或处理、手性网络和隐形传感[1]。通过破坏洛伦兹互易性,人们已经利用原子[2,3]、固体器件[4–12]和合成材料[13–19]实现了经典信息(即平均光子数)的单向流。同样,也可以实现量子光二极管或量子信息的单向流。事实上,人们已经证明了单光子及其量子涨落的非互易控制,例如单光子二极管[20,21]或循环器[22],以及单向光子阻塞[23,24],这为手性量子工程[25–28]提供了关键工具。然而,到目前为止,在经典和量子区域之间切换单个非互易装置的可能性,以及用非互易装置保护量子纠缠的可能性尚未被揭示。在这里,我们提出了如何在腔光力学(COM)中实现非互易量子纠缠,揭示其在传统设备中无法实现的独特性质。具有相干光运动耦合的 COM 设备 [29,30] 已广泛用于大质量物体的量子控制 [31 – 36],特别是 COM 纠缠 [37 – 45] 或 COM 传感器 [46 – 48]。最近,甚至在光和 40 公斤镜子之间也观察到了室温下的量子关联 [49] 。在这里,我们表明 COM 纠缠可以以高度不对称的方式进行操纵,并且由此产生的非互易纠缠具有反直觉的能力,可以保持其
摘要 介绍了由空间电推力器系统(SETS)设计的电力推进系统 SPS-25。该系统输入功率为 150 – 250 W,由以下部分组成:霍尔推力器 ST-25;氙气存储和供给系统 (XFS) 和电源处理单元 (PPU)。在参考输入功率(150 – 250 W)下,ST-25 提供 5 – 11 mN 的推力,高达 1200 s 的比冲,效率在 26 – 32% 范围内。ST-25 结构的特点是,为了减少加速通道中形成径向磁场所需的电功率,在中心磁极使用永磁体。氙气存储和供给系统由聚合物复合材料制成的用于储存工作物质的罐组成,可在 150 bar 压力下储存氙气;高压单元,用于将蓄能器罐中的压力降至 1.0-1.2 巴,低压单元,用于将工作物质以设定的质量流速从蓄能器罐供给到阳极单元和空心阴极。对于工作物质的储存和供给系统的结构,SETS 公司设计了高压(最高 200 巴)和低压(最高 5 巴)阀。为了向阳极和空心阴极提供设定的质量流速的工作物质,SETS 公司开发了相应的流量限制器。电源处理单元由几个独立的电源组成:阳极单元的放电电源;推进器电磁铁的电流源;空心阴极加热器的电流源;供给系统的电压源。功率处理单元还包含推进系统的控制单元,该控制单元获取推进系统的开启和关闭命令,为推进系统提供工作,并形成有关推进系统子系统状态的遥测信号并将信号传输到控制系统。
信号在自然界和(人造)技术中都至关重要,因为它们使通信成为可能 1、2(图 1)。从数学上讲,信号是一维(例如语音)或多维(例如二维 (2D) 图像)的函数,它携带有关物理系统 3 的属性(例如状态)的信息。源通过信道将信号传输到接收器,接收器再将信号传送到目的地。例如,大脑通过声带通过空气发送口头信息,听者的耳朵接收该信息,然后将其传送到听者的大脑。当相同的信息通过智能手机传输时,空气会通过技术链进行补充,而其余部分则保持不变。信号在社会中无处不在 3、4(图 1)。无论信号来自何处,都需要进行处理才能生成、转换、提取和解释其所携带的信息 3。一种广泛用于解释(即提取和分析)信号中重复模式的方法是傅里叶变换 (FT) 3、4。FT 将时间函数转换为频率的复值函数,表示频率的幅度。FT 假设信号是平稳的。换句话说,它是一个随机过程,其中边际和联合密度函数不依赖于时间原点的选择 2。然而,在现实世界的实践中,这一假设经常被违反。因此,FT 无法可靠地处理现实世界的非平稳信号 5。为了避免非平稳性问题,存在先进的算法,这些算法基于信号分解为在时间和频率上很好地局部化(或分箱)的基本信号来分析信号 4。这些算法包括短期傅里叶变换 (STFT),也称为 Gabor 变换,和小波变换 (WT) 6。 STFT 与 FT 非常相似,但它使用窗口函数和在时间和频率上都局部化的短小波(而不是纯波)来提取时间和频谱信息。STFT 的缺点是它使用固定宽度的窗口函数,因此频率分析仅限于波长接近窗口宽度 7 的频率。此外,将信号切成短的固定宽度窗口会扰乱信号的属性。因此,频率分析会受到影响 8 。
摘要:最近,由于其在促进新的治疗策略的发展方面的优势,通过采用一种成本友好的方法并避免了严格的食品和药物药物(FDA)法规,因此最近在癌症中尤其是在癌症中获得了越来越多的兴趣。acriflavine(ACF)是FDA认可的分子,自1912年以来,已对具有抗菌,锥虫,抗病毒,抗菌和抗癌作用进行了广泛研究。ACF已显示可阻止固体和造血细胞的生长。的确,ACF充当各种蛋白质的抑制剂,包括DNA依赖性蛋白激酶C(DNA-PKC),拓扑异构酶I和II和II,低氧诱导因子1α(HIF-1α),除了它最近发现作为信号传输者和激活型Tran-crastion-sattran-crastion(Statsion-state)的抑制剂(STAT)的抑制剂。慢性髓样白血病(CML)是一种克隆骨髓增生性疾病,其特征在于组成型活性酪氨酸激酶BCR-ABL的表达。该蛋白质允许激活几种以其在细胞增殖和存活中的作用而闻名的信号通路,例如JAK/STAT途径。基于酪氨酸激酶抑制剂(TKIS)(例如伊马替尼(IM))的 CML治疗非常有效。 但是,有15%的患者与IM骨折,在某些情况下,有20-30%的患者具有抗性。 因此,我们建议在IM失败或与IM结合使用IM以改善IM的抗肿瘤效应后,在CML中重新利用ACF。 在这篇综述中,我们介绍了ACF的不同药理特性以及其抗白血病作用,以期在CML治疗中重新利用。CML治疗非常有效。但是,有15%的患者与IM骨折,在某些情况下,有20-30%的患者具有抗性。因此,我们建议在IM失败或与IM结合使用IM以改善IM的抗肿瘤效应后,在CML中重新利用ACF。在这篇综述中,我们介绍了ACF的不同药理特性以及其抗白血病作用,以期在CML治疗中重新利用。
热色素[3]或发光探针[4]和高温计,[5]具有传感器大小,从而建立了空间分辨率至纳米尺度(纳米热计)[6],它们都有自己的优点和缺点。反向传感器(温度计)实时指示温度,因此无法提供有关经过的温度事件的信息。相比之下,指示器(不可逆传感器)通过定义的不可逆信号改变遇到了温度事件。他们可以提供有关不希望的温度滥用的信息,即,在整个材料的整个历史上,胶水的漏洞,电子压力形成或电子功能以及所需的温度激活过程,例如固化胶或消毒。但是,这些需求需要足够小的温度指示剂添加剂,这可以精确地从所需的位置读取信息,例如两种材料之间的胶水间相互之间的胶合。对于许多应用方案,例如对易腐产品的冷链管理[7]和电子设备[8]或电池的温度监测,[9,10]光学,即比色[11]或发光[12-14],温度指示器是由于其低 - 网络可见能力而有希望的候选者。但是,它们的光信号特征意味着该指示器需要用于光线,这在许多情况下都可以防止其利用。这将使从内部获得温度历史记录,即通过非接触式读数的散装,甚至是不透明或深色实心多组件对象,这仍然是为其他方法而言。因此,由于磁信号传输本质上独立于宿主的光吸收而产生易于集成的(亚)微米尺寸的磁性温度指示剂添加剂。此外,诸如铁氧化铁之类的磁性材料对环保,廉价且进行了良好的研究。虽然基于磁性的温度依赖性[15-23]或所谓的磁性记忆效应(MME)[24,25]的实时温度传感器已经实现,但迄今为止,一种易于集成的温度指示剂添加剂具有MAG Netic Netic Netic读取选项,我们的知识尚未得到我们的知识。然而,如果这种添加剂的敏感和快速解析</div>,这种添加剂的应用潜力将是巨大的
我们引入神经网络作为人工智能模型之一。神经网络是生物神经细胞回路中进行的信息处理的模型。神经细胞由称为细胞体的主体、从细胞体延伸出来的树突和连接到其他细胞的轴突组成。轴突的末端附着在其他神经细胞的树突上,轴突与其他神经细胞的连接处称为突触。树突接收来自其他细胞和感觉细胞的输入信号,信号在细胞体内进行处理,并通过轴突和突触将输出信号发送给其他神经元(图2(a))。 据称大脑中的神经元数量约为 10^10 到 10^11。通过结合这些细胞,每个神经元以并行和分布式的方式处理信息,从而产生非常复杂和先进的处理。一个细胞的输出通过突触传递到其他细胞,通过轴突可以分支成数十到数百个神经元。单个细胞具有的突触连接数量从数百个到数万个不等。所有这些突触连接都有助于神经元之间的信号传输。 当一个信号从另一个神经细胞到达一个神经细胞时,膜电位会因信号而发生变化,当信号超过一定的阈值时,电位就变为正值,神经细胞就会兴奋。然后它向其他神经元发送信号。无论输入值如何,该图的形状几乎都是相同的波形,一旦超过阈值,就会产生恒定形状和幅度的电脉冲。因此人们认为,神经网络中承载信息的不是电脉冲的波形,而是电脉冲的频率(图2(b))。 细胞体的阈值函数,当输入高于阈值时,发出电脉冲,当输入低于阈值时,不发出电脉冲,具有从输入到输出的非线性转换效果。此外,还有兴奋性突触,它会释放使输入神经细胞更容易兴奋的递质,还有抑制性突触,它会使输入神经细胞更不容易兴奋。接收输入神经元可以被认为是接收来自每个输出神经元的输入的总和。 神经网络的数学模型源于对神经元的观察。 1943年,McCullough和Pitts提出了正式的神经元模型。图 2(c)中的圆圈表示一个神经元的模型。 xk 取值 0 和 1,表示该神经元接收的突触数量。
课程目标:细胞生物学课程提供了对细胞细胞器和组件的结构和功能的基本理解,以及细胞与其微环境单元I-I:细胞结构和功能的功能相互作用:细胞大小和形状的多样性;细胞理论;原核细胞和真核细胞的结构;细胞细胞器及其组织,细胞内室内化 - 肾上腺素 - 类型和功能,过氧化物酶体,内体和溶酶体的结构和功能,线粒体的结构功能和叶绿体;细胞外基质,微生物中细胞壁的结构和功能。UNIT-II: PLASMA MEMBRANE STRUCTURE AND FUNCTION: Chemical composition and molecular arrangement (lipid bilayer, membrane proteins and carbohydrates), models of membranes (fluid mosaic)., Membrane Transport: Active and passive transport of ions, Na+/K+ pump, ATPase pumps, Co-transport, Symport, Antiport, Endo cytosis and Exocytosis.单位-III:细胞相互作用和细胞骨架:细胞粘附分子:钙粘蛋白,类似于分子的免疫球蛋白,整联蛋白和Selectins。细胞连接:紧密连接,脱骨体,半底体和间隙连接。微管,微丝及其动力学。Centrosome,Cilia,Flagella。有丝分裂仪和染色体的运动。单位IV:细胞周期和检查点和癌症:细胞周期 - 细胞周期,相间,有丝分裂,减数分裂和细胞因子的细胞周期控制和检查点的各个阶段,细胞周期中断;癌症;类型和阶段。肿瘤抑制基因和原子基因。癌症的分子基础。wnt,jak-stat途径。单位V:细胞信号传导,凋亡和坏死:概述,胞质,核和膜结合受体,次级使者的概念,CAMP,CGMP,CGMP,蛋白质激酶,G蛋白,信号传输机制。衰老,坏死分类,坏死的形态模式,坏死原因,凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症细胞凋亡的凋亡 - 程序性细胞死亡;凋亡的机制;由内部信号触发的凋亡;由外部信号触发的凋亡;凋亡诱导因子;癌症的凋亡。
2024-04-10 IHP 的新型功率放大器增强了未来超 5G 技术的信号传输 德国法兰克福(奥得河畔)。在 IHP - 莱布尼茨高性能微电子研究所,由 Mohamed Hussein Eissa 博士领导的研究人员成功开发出一种新型硅基功率放大器,推动了超 5G 技术的发展。这是通过采用 IHP 最新的 SG13G3 技术实现的,展示了其进一步开发新型前沿硅基亚太赫兹集成电路的潜力。研究结果发表在 IEEE 微波和无线元件快报上,研究由德国联邦教育和研究部 (BMBF) 资助。该出版物获得了 2024 年 Tatsuo Itoh 论文奖,成为该出版物中发表的文章中贡献最大的论文。技术卓越性、贡献意义和展示效果都会受到评判。功率放大器对于增强传输信号的信号强度是必不可少的。电信号经过几个级联放大器级,然后才到达集成电路的输出端或发射系统的天线。由于通信和雷达技术的需求快速增长,我们这个互联世界对此类集成电路的需求很高。“与 200 GHz 以上的最先进硅基放大器相比,这种功率放大器的带宽提高了两倍,效率提高了 1.5 倍,”首席科学家 Dr.-Ing. Mohamed Hussein Eissa 解释道。自 2014 年 10 月以来,他一直在德国法兰克福(奥得河畔)莱布尼茨高性能微电子研究所 (IHP) 工作,担任研究科学家,后来担任电路设计部毫米波和太赫兹传感器组负责人。IHP 开发的先进功率放大器的其他新兴应用领域是用于安全应用的亚太赫兹成像系统或联合通信和传感系统,这些系统将与即将到来的 6G 标准相关。在这里,发射的无线电信号用于通信,同时也用于定位物体,补充了传统的雷达方法。这项研究是在增加亚太赫兹频率硅技术的利用率的背景下进行的,亚太赫兹频率的频谱在 100 到 1000 GHz 之间。
突破性平台为治疗瘫痪等神经系统疾病开辟了新的可能性 华盛顿特区——在 2023 年神经外科医师大会 (CNS) 年会开幕科学会议上,西奈山医院神经外科系临床讲师兼 Synchron 公司首席执行官医学博士、哲学博士 Thomas J. Oxley 揭开了其公司新颖的脑机接口 (BCI) 技术的强大功能。Oxley 博士是一位血管和介入神经病学家,也是 BCI 领域的全球专家,他介绍了这种神经接口技术的最新应用。 瘫痪可能导致身体肌肉失去控制,但大脑可以保持完整。运动意图是大脑发出的身体运动意愿背后的信号。脑机接口旨在恢复与瘫痪相关的丢失的运动意图信号传输。在微创血管内手术中,该装置通过颈静脉植入大脑的运动皮层。一旦植入,它就能检测并无线传输运动意图,以控制个人数字设备并实现以前不可能实现的通信。Synchron 享誉国际的 stentrode TM 设备能从血管内记录大脑活动,捕捉用户的想法来控制数字设备,让瘫痪患者恢复运动和说话能力。该系统能检测运动意图并将其无线发送到大脑外,恢复对数字设备的控制。这种数字运动输出类似于手指在触摸屏上按下选择按钮。Oxley 博士表示:“公司正在推进一项关键的食品药品监督管理局试验,该试验评估永久植入血管内 BCI 对双侧上肢运动障碍严重、无法在个人计算设备屏幕上做出选择的患者的影响。”纽约州立大学布法罗分校神经外科中心主任、教授兼 CNS 医学博士 Elad I. Levy 总结道:“我们即将让那些因 ALS、中风和创伤性脊髓损伤等悲惨疾病而隔离的患者恢复功能和交流能力。这项技术未来有可能治疗那些无法治愈的悲惨疾病。”