Loading...
机构名称:
¥ 1.0

近年来,非互易物理取得了迅速发展,其独特应用包括不受反向作用影响的信号传输或处理、手性网络和隐形传感[1]。通过破坏洛伦兹互易性,人们已经利用原子[2,3]、固体器件[4–12]和合成材料[13–19]实现了经典信息(即平均光子数)的单向流。同样,也可以实现量子光二极管或量子信息的单向流。事实上,人们已经证明了单光子及其量子涨落的非互易控制,例如单光子二极管[20,21]或循环器[22],以及单向光子阻塞[23,24],这为手性量子工程[25–28]提供了关键工具。然而,到目前为止,在经典和量子区域之间切换单个非互易装置的可能性,以及用非互易装置保护量子纠缠的可能性尚未被揭示。在这里,我们提出了如何在腔光力学(COM)中实现非互易量子纠缠,揭示其在传统设备中无法实现的独特性质。具有相干光运动耦合的 COM 设备 [29,30] 已广泛用于大质量物体的量子控制 [31 – 36],特别是 COM 纠缠 [37 – 45] 或 COM 传感器 [46 – 48]。最近,甚至在光和 40 公斤镜子之间也观察到了室温下的量子关联 [49] 。在这里,我们表明 COM 纠缠可以以高度不对称的方式进行操纵,并且由此产生的非互易纠缠具有反直觉的能力,可以保持其

非互易光机械纠缠可减少背向散射损失

非互易光机械纠缠可减少背向散射损失PDF文件第1页

非互易光机械纠缠可减少背向散射损失PDF文件第2页

非互易光机械纠缠可减少背向散射损失PDF文件第3页

非互易光机械纠缠可减少背向散射损失PDF文件第4页

非互易光机械纠缠可减少背向散射损失PDF文件第5页